I.LON SmartServer Freely
Programmable Modules
User’s Guide

£ ECHELON

000000000000

Echelon, i.LON, LON, LONWORKS, LonTalk, Neuron,
LONMARK, 3120, 3150, LNS, LonMaker, and the Echelon
logo are trademarks of Echelon Corporation registered
in the United States and other countries. LonPoint and
LonSupport are trademarks of Echelon Corporation.

Other brand and product names are trademarks or
registered trademarks of their respective holders.

Neuron Chips, LonPoint Modules, and other OEM
Products were not designed for use in equipment or
systems which involve danger to human health or safety
or a risk of property damage and Echelon assumes no
responsibility or liability for use of the Neuron Chips or
LonPoint Modules in such applications.

Parts manufactured by vendors other than Echelon and
referenced in this document have been described for
illustrative purposes only, and may not have been tested
by Echelon. Itis the responsibility of the customer to
determine the suitability of these parts for each
application.

ECHELON MAKES NO REPRESENTATION, WARRANTY, OR
CONDITION OF ANY KIND, EXPRESS, IMPLIED, STATUTORY,
OR OTHERWISE OR IN ANY COMMUNICATION WITH YOU,
INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED
WARRANTIES OF MERCHANTABILITY, SATISFACTORY
QUALITY, FITNESS FOR ANY PARTICULAR PURPOSE,
NONINFRINGEMENT, AND THEIR EQUIVALENTS.

No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any
means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior written
permission of Echelon Corporation.

Printed in the United States of America.
Copyright ©1997-2008 by Echelon Corporation.
Echelon Corporation

www.echelon.com

Preface

Preface

You can use i.LON SmartServer Programming Tools to create custom embedded
applications and drivers, which are referred to as freely programmable modules (FPMs),
for your SmartServer. FPMs let you customize the embedded software of the
SmartServer to meet your specific needs. Using i.LON SmartServer Programming Tools,
you can write FPMs in C or C++, compile them, and then upload them to your
SmartServer. You can then deploy your FPMs on SmartServers that have an FPM
programming license installed on them. You can also create FPM application licenses
and use them to protect your FPM applications and make them available to customers for
order.

i.LON SmartServer Freely Programmable Module User’'s Guide iii

Welcome

The SmartServer includes i. LON SmartServer Programming Tools for creating custom C/C++
applications and drivers (called freely programmable modules [FPMs]) that you can use to customize
the functionally of the SmartServer. You can use your FPMs for a number of applications, including
energy optimization, data analysis, lighting control, and room control. You can also use the i.LON
SmartServer Programming Tools to translate the SmartServer Web interface into a number of different
languages (language localization).

Purpose

This guide describes how to create and use FPMs on your SmartServer, and how to localize the
language of the SmartServer Web interface.

Audience

This guide is intended for system designers and integrators with an understanding of control networks
and the ability to program in C or C++, and for language localization developers.

Models

This guide is intended for FT-10 and PL-20 models of the SmartServer hardware on which FPM
Programmability is licensed. This includes models of the SmartServer on which the FPM
programming license is pre-installed (model numbers 72101R-409, 72101R-410, 72102R-409,
72102R-410, 72103R-409, and 72103R-410), and all other models of the SmartServer hardware for
which the FPM programming license (Echelon path number 72161) has been ordered and installed.

I.LON SmartServer Programming Tools Versions

The i.LON SmartServer DVD includes a trial version of the i.LON SmartServer Programming Tools.
You can use the trial version to write an unlimited number of FPMs. To compile your FPMs and
deploy them on your SmartServer, you must order an i. LON SmartServer Programming Tools DVD.
To order the i.LON SmartServer Programming Tools DVD, contact your Echelon sales representative.

I.LON SmartServer Programming Tools Applications

Installing the trial or full version of the i. LON SmartServer Programming Tools adds the following
programs to your computer:

e i.LON SmartServer Programming Tool. A pre-configured Eclipse Development Kit that includes
FPM template files, the FPM library, a tool for creating the C structures of user-defined UNVTs, a
C++ compiler, and a CYGWIN environment. You must have the full version of the i.LON
SmartServer Programming Tools to compile and upload FPMs to your SmartServer with the
i.LON SmartServer Programming Tool.

e i.LON SmartServer LonWorks Interface Developer tool. A command line interface that converts
a model file (.nc extension) to a device interface (XIF) file. You must create a XIF for your FPM
in order to deploy it on your SmartServer. See Chapter 4 for more information on creating XIFs
with this tool.

e i.LON License Generator. A tool for creating licenses that help protect your FPM application
from piracy or unauthorized use. The i.LON License Generator includes the following three
components:

o The main executable (iLONLicenseGen.exe) that provides a user interface for entering the
values used to generate an FPM license.

Preface

o A sample license generator configuration file (an XML file named
iLONL.icenseGenValuesSample.xml) that demonstrates the structure of the i.LON License
Generator user interface and provides sample pre-defined values.

o A sample security DLL file (LicenseSecurityHMACMDO5.dlII) that takes the values entered
in the i.LON License Generator user interface and creates an FPM license.

See Chapter 7 for more information on creating FPM application licenses.

Requirements

The following sections list the hardware and software requirements for running the i.LON SmartServer
Programming Tools, and requirements for deploying and running FPMs on an i.LON SmartServer.

Hardware Requirements

The following are minimum requirements for the computer running the i. LON SmartServer
Programming Tool and the SmartServer Web pages:

Pentium I 600 MHz or faster

500 MB RAM minimum

100 MB free hard disk space

DVD-ROM drive

Super VGA (1024 x 768) or higher-resolution display with 256 colors

Mouse or compatible pointing device

RS-232 null modem cable. You use this cable to physically connect the computer running the
i.LON SmartServer Programming Tool to the SmartServer console port. This enables you to use
the SmartServer console port to debug your FPMs during runtime.

Software Requirements

The following are minimum software requirements for computers running the i.LON SmartServer
Programming Tool and the SmartServer Web pages:

Microsoft Windows Vista™ or Microsoft Windows XP. Echelon recommends that you install the
latest service pack available from Microsoft for your version of Windows XP. Screen resolution
1024 x 768 with large or small fonts; 800x600 with small fonts only.

Microsoft Internet Explorer 6 or higher. The SmartServer Web pages support Internet Explorer 6;
however, there may be a significant delay when loading the SmartServer Web pages if the
navigation pane contains more than 2,000 icons. It is strongly recommended that you install
Internet Explorer 7 to optimize the performance of the SmartServer Web pages. You can install
Internet Explorer 7 from the i.LON SmartServer DVD.

Terminal emulator such as Windows HyperTerminal. Note that Windows HyperTerminal is not
included with Windows Vista; therefore, you can license Windows HyperTerminal from
Hilgraeve, or you can download a free terminal emulator such as puTTy to your computer

I.LON SmartServer Requirements

You can run FPMs on the SmartServer hardware (they cannot be run on i.LON 100 e3 server
hardware). The i.LON SmartServer embedded image and an FPM programming license must be
installed on the SmartServer hardware.

To run your FPMs on your SmartServer, your SmartServer must have an FPM programming license
installed on it. If you do not have a SmartServer model 7210xR-409 or 7210xR-410, on which the
FPM programming license is pre-installed, you can order a FPM programming license from the i. LON
SmartServer Web site at www.echelon.com/products/cis/activate. To run Echelon first-party FPMs or

i.LON SmartServer Freely Programmable Module User’'s Guide

http://www.echelon.com/products/cis/activate

third-party FPMs on your SmartServer, your SmartServer must also have a separate FPM application
license from Echelon or the third-party FPM vendor.

Creating FPM Application Licenses

You can create FPM application licenses for your FPMs to protect your FPMs from unauthorized use
and piracy, and to make your FPMs available to customers for order. The i.LON SmartServer
Programming Tools includes the components required to create a FPM licensing tool. Once you create
your FPM licensing tool, you can use it to create FPM application licenses that must be installed on a
SmartServer in order for it to run your FPMs. Customers who want to implement your FPMs on their
SmartServers must order your FPM application license and install it on their SmartServers.

Related Reading

The documentation related to the SmartServer is provided as Adobe Acrobat PDF files and online help
files. The PDF files are installed in the in the Echelon i.LON SmartServer Software program folder
when you install the i.LON SmartServer software. You can download the latest SmartServer
documentation, including the latest version of this guide, from Echelon’s website at
www.echelon.com/support/documentation/manuals/cis.

e i.LON SmartServer User’s Guide. Describes how to configure the SmartServer and use its
applications to manage control networks

e i.LON SmartServer Power Line Repeating Network Management Guide. Describes how to install
a PL-20 repeating network and how to use the SmartServer to prepare, maintain, monitor and
control, and connect the network.

e i.LON SmartServer Programmer’s Reference. Describes how to configure the SmartServer using
XML files and SOAP calls. This allows you to create your own applications that you can use to
configure the SmartServer.

e i.LON SmartServer Hardware Guide. Describes how to assemble, mount, and wire the
SmartServer hardware.

o NodeBuilder Resource Editor User’s Guide. Describes how to use the NodeBuilder Resource
Editor to create and edit functional profile templates.

e Neuron C Programmer’s Guide. Describes how to write programs using the Neuron” C Version
2.1 language.

o Neuron C Reference Guide. Provides reference information for writing programs using the
Neuron C language.

o LONMARK Resource Files, version 13.00. Documents the standard network variable types
(SNVTs), standard configuration property types (SCPTs), and standard enumeration types that you
can declare in your FPM applications and drivers. You can go to types.lonmark.org/index.html to
check the current LONMARK standard resource file.

Content

Vi

This guide includes the following content:

e Introduction. Provides an overview of freely programmable modules (FPMs) and explains the
types of tasks FPMs can perform. Describes the types of custom embedded applications and
drivers you can create with FPMs. Explains how to create and configure FPMs. Summarizes how
to create FPM application licenses in order to protect your FPM applications and make them
available to customers for order. Provides a quick-start exercise that you can use to create a
simple FPM application.

Preface

http://www.echelon.com/support/documentation/manuals/cis
http://types.lonmark.org/index.html

o Installing the i.LON SmartServer Programming Tools. Describes how install the i. LON
SmartServer Programming Tools and how to upgrade a trial version of the i. LON SmartServer
Programming Tools Development tool to the full version.

e Creating FPM Templates. Describes how to use the NodeBuilder Resource Editor to create the
user-defined functional profile templates (UFPTs) to be used by your FPMs. Explains how to
upload the UFPTs to your SmartServer so that you can begin writing your FPMs.

e Creating FPM Device Interface (XIF) Files. Describes how to create a static device interface
(XIF) file for your FPM. This step is required if you are integrating your FPM applications with
another LNS application such as the LonMaker tool. Describes how to write a model file that
declares the network variables and configuration properties in your FPM and a functional block
implementing an instance of the UFPT used by your FPM. Explains how to use the i.LON
SmartServer LONWORKS Interface Developer tool to convert your model file to a device interface
(XIF) file and how to copy the XIF to your SmartServer.

e Creating Freely Programmable Modules. Describes how to use the i.LON SmartServer
Programming Tool to create a new FPM project, and then write, compile, and debug FPM
applications and FPM drivers.

e Deploying Freely Programmable Modules on the SmartServer. Describes how to use the i.LON
SmartServer Programming Tool to upload FPMs to one or more SmartServers. Explains how to
select a network management service (LNS or Standalone) for running your LONWORKS network.
Describes how to create, commission, and connect, and test FPM devices on the SmartServer.
Describes how to create a custom configuration Web page for FPM applications. Explains how to
update an FPM application. Describes how to deploy licensed FPMs.

e Creating FPM Application Licenses. Describes how to create FPM application licenses so that
customers can order and implement your FPMs on their SmartServers. Describes how to build an
FPM licensing tool. Explains how to enable license validation in your FPM application.
Describes how to create FPM application licenses. Lists the files you need to provide to
customers who order your licensed FPM applications.

e Localizing the SmartServer Web Interface. Describes how to translate custom SmartServer Web
pages and the entire SmartServer Web interface to a different language.

e Appendices. Includes a programmer’s reference for writing FPM applications and drivers, and a
checklist outlining the FPM development and deployment process.

For More Information and Technical Support

The i.LON SmartServer Programming Tools - ReadMe file provides descriptions of known
problems, if any, and their workarounds. To view the i.LON SmartServer Programming Tools -
ReadMe, click Start, point to Programs, point to Echelon i.LON SmartServer Programming Tools,
and then select i.LON SmartServer Programming Tools - ReadMe. You can also find additional
information about the SmartServer at the i.LON Web page at www.echelon.com/ilon.

If you have technical questions that are not answered by this document, the i.LON SmartServer User’s
Guide, the SmartServer online help, or SmartServer Web pages, you can get technical support from
Echelon. Your SmartServer distributor may also provide customer support. You can learn more about
how to use the SmartServer by enrolling in training classes at Echelon or at an Echelon training center,
or by registering for free online eTraining courses offered by Echelon. See
www.echelon.com/training/etraining for more information on the €Training courses available for the
SmartServer.

To receive technical support from Echelon for the SmartServer, you must purchase support services
from Echelon or an Echelon support partner. See www.echelon.com/support for more information on
Echelon support and training services. There is no charge for software installation-related questions
during the first 30 days after you receive the i.LON SmartServer DVD.

i.LON SmartServer Freely Programmable Module User’'s Guide Vi

http://www.echelon.com/ilon
http://www.echelon.com/training/etraining
http://www.echelon.com/support

You can obtain technical support via phone, fax, or e-mail from your closest Echelon support center.
The contact information is as follows:

Region Languages Supported Contact Information
The Americas English Echelon Corporation
Japanese Attn. Customer Support
550 Meridian Avenue

San Jose, CA 95126

Phone (toll-free): 800 258 4LON
(258-4566)

Phone: 408 938 5200

Fax: 408 790 3801
lonsupport@echelon.com

Europe English Echelon UK
German 16, The Courtyards
French Hatters Lane
Italian Watford
Herts. WD18 8YH
United Kingdom

Phone: 44 0 1923 430200
Fax: 44 0 1923 430300
lonsupport@echelon.co.uk

Japan Japanese Echelon Japan

Holland Hills Mori Tower, 18F
5-11-2 Toranomon, Minato-ku
Tokyo 105-0001

Japan

Phone: 81 3 5733 3320

Fax: 81 3 5733 3321
lonsupport@echelon.co.jp

China Chinese Echelon Greater China
English Rm. 1007-1008, IBM Tower
Pacific Century Place
2A Gong Ti Bei Lu
Chaoyang District

Beijing 100027, China
Phone: 86 10 6539 3750
Fax: 86 106539 3754
lonsupport@echelon.com.cn

Other Regions English Phone: 408 938 5200
Fax: 408 328 3801
lonsupport@echelon.com

You can submit a feedback form with suggestions on how to improve the product’s functionality and
documentation at www.echelon.com/company/feedback. This feedback form is not forwarded to
technical support and should not be used to submit technical or product support related issues. Please
send your technical support questions to your Echelon support center.

viii Preface

mailto:lonsupport@echelon.com
mailto:lonsupport@echelon.co.uk
mailto:lonsupport@echelon.co.jp
mailto:lonsupport@echelon.com.cn
mailto:lonsupport@echelon.com
http://www.echelon.com/company/feedback.asp

Table of Contents

P B G iii
LTATZ=2 (o] 1 = RSP iv
PUMDOSE ..t e e e s s e e e e e e e s e e e e e e e e e ann iv
F U o 1= (ot PRSP iv
1Yo o = R PP iv
i.LON SmartServer Programming ToO0IS VErsioNns..........cccccveeviiieeeiniiieee e, iv
i.LON SmartServer Programming Tools Applicationsccccccveeviiieeennnnen. iv
REQUITEIMENTS ...eiiiiiiiiie ittt sb e aneeas %
Hardware REQUIFEMENTScoiiiiiiiiiiiie et v
Software REQUIFEMENTSoiiiiiiiiiiiiiiee e %
i.LON SmartServer ReqUIrEMENLScooieiiiiiiiiiiieiee e %
Creating FPM Application LICENSESccccuvieiiiiee it crvirre e e e Y
Related REAAINGuuviiieiie i e e e e e s e e e e e e e e e anes Vi
1©70] 1] (=] o | EF PR PPRR Vi
For More Information and Technical SUPPOrt.........ccccvieeieeeie i vii
Table Of CONLENES ...oiiiiiiii e iX
1 INtrOAUCTION oo 1
Overview of Freely Programmable Modulescccooeeeeeeei e 2
FP M Ty S ottt 2
Creating and Deploying FPMS ... 2
Debugging FPMS ..ot 3
Creating FPM Application LICENSEScccceciviiiiiieieie e 4
QUICK-Start FPM EXEICISEccocuiiiiiiiie ettt e e e et e e e e e e e 4
Step 1: Creating and Copying the FPM Template............ccccccceeeeiiiiinneen. 5
Step 2: Creating and Copying the Device Interface (XIF) File.................. 7
Step 3: Creating the FPM Project ... 8
Step 4: Writing the FPM Application ... 10
Step 5: Deploying the FPM Application on a SmartServer..................... 10
Uploading the FPM Applicationccccvveeeee e 11
Creating an Internal FPM deViCE...........cccciviieeeeee i 13
Step 6: Testing the FPM Application...........c.cccoovvvviieeeie s 14
Step 7: Connecting the FPM Data Points..........ccccvveviee e 15
2 Installing i.LON SmartServer Programming ToOIS...........cccvuuenn. 21
Installation and Upgrading OVEIVIEW..........ccccoiiiiiiiiiiiieee e cciirieeee e e 22
Installing i.LON SmartServer Programming TOOIS.......ccccccceevviiiiivnennnnnn. 22
Upgrading a Trial Version of i.LON SmartServer Programming Tools... 27
Updating the i.LON SmartServer Programming TOOlccccceeevvvinnnnnee. 28
Importing EXisting FPM ProjectS.......ccccii i 29
Uninstalling i.LON SmartServer Programming TOOISccccoeveveennnn 32
3 Creating FPM Templatescoovvvvviiiiiiiieiieieeeeeeeeeeeeeeeeeeeeeeeeeeee e 33
Creating FPM Templates OVEIVIEWccccvvviieeeeeiiisiiiiiieeee et ee e 34
Creating User-Defined Functional Profile Templatesccccccceeveernnns 34
Adding Network Variable and Configuration Property Types 40
Generating and Copying the Updated FPM resource file set................. 45
4 Creating FPM Device Interface (XIF) FileScoovvvvvvvivvviviiiiiiieennee, 49
Creating FPM Device Interface (XIF) Files OVervieW...........cccocccvvvveeeeeenninns 50
Creating @a Model File........ccviiiiiiie e 50
Declaring Network Variablesccccooviiiieeiie e 50
Declaring Configuration Propertiesccccccveeevviicvireeeeee e 51

i.LON SmartServer Freely Programmable Module User’'s Guide

Declaring Functional BIOCKSccceeeiiiiiiiiiiiie e 52

Using INCIUAE DiIr€CHVESvviieeiie et 53
Example Model Filesoooiiiiiiii e 53

Saving your Model Filecooiiiiiiie e 56
Generating a Device Interface (XIF) File ..o 57
Using Long and Short Command Switch FOrmsccccccoviiinnnee. 58

Other Command SWILCNES.............oooiiiiiiiiiiii e 58
Creating Freely Programmable Modulescccccccvivniiinninnnnnnns 59
Creating FPMS OVEIVIEW.ocuiiiiiiiiiie ittt 60
Creating NeW FPM ProjectS........oocuiiiiiiiiiie e 61
Viewing the Resource Files on a SmartServer...........ccccooovvvieeeennn. 61
Creating an FPM ... 62
Updating Data Point Declarationsccccceeeniiiiiiieeiieee e 65

Writing an FPM AppPliCation............ccovveiiiiiiiiiiienee e 68
The Writing the FPM Application Initialize() Routine..........cccc.cco... 69

Writing the FPM Application Work() Routine.........cccccceeevviiiiinnennn.n. 71

Writing the FPM Application OnTimer() Routingcccccvvvvveeen..n. 75

Writing the FPM Application Shutdown() Routine..............ccccvveee.... 77

WIHtING @N FPM DEIVETvveiiiee et e e 77
Writing the FPM Driver Initialize() Routingccccoeviieiiiiiee e 78

Writing the FPM Driver Work() RoUtine..........coooviiieiiiiieiniiee e 78

Writing the FPM Driver OnTimer() Routineccccceeeiiiiiiiiiieeeen. 79

Writing the FPM Driver Shutdown() RoOUtingcccceeiiiiiiiiiieenen. 80
Compiling 8N FPM.....cooiiiie e 80
Checking Compile and Warning Errors.........ccccccoeevivivieeeeee e, 80

Using Non-Latin Charactersccccccoevviviiieeiie e 81
DebUGING FPMS ...cooiiii ettt a e 82
Using Wind River Workbenchcccoociiei e 83

Using FPM Development Guidelinesccccceeevviiiiiieeeee e, 92
Deploying Freely Programmable Modules on a SmartServer..... 95
FPM Deployment OVEIVIEW.........cuiiiiiiiiiiiiieeeee e e et e e s siirrre e e e e e 96
Uploading FPM Applications and DIiVErScccccceeeeeiiiiiiiieeeeee e 97
Selecting a Network Management SErviCe........cccccvvveeeviiicviiineeeeeenninnns 101
Using LNS Network Management SErviCes.........ccccvcvveeevevecvnnnnn. 101

Using Standalone Network Management............cccccvvevveeeeeeiccennnen, 106

Adding FPM Devices to the SmartServer........ccccccovveveiinee e 107
Using a Static Device INterfacecccovvvveieiiiiie e, 108

Using a Dynamic Device INterfaceccccccovveeeeiiiieie i, 110
CommisSioNiNg FPM DEVICESccoiiiuiiiiiiiieee e 114
Commissioning FPM Devices with the SmartServer..................... 114
Commissioning FPM Devices with the LonMaker Tool.................. 114
Recommissioning FPM DEVICES...........cccciuireieieeeiiiiiiiieeeee e e 115
Testing FPM AppPliCatioNSovveiiieeeiiiiiiiiiiee e 116
Connecting FPM Data POINtS...........ccccciiiiiiee e 116
Creating LONWORKS CONNECLIONSccuvvviiirieeeeeieiniieee e e e e e e s 117
Creating Web CoNnNECHiONS...........cuvivieeiiiiiiiiereee s e e e e e 121
Creating Custom FPM Configuration Web Pagescccccvvveveeeennne 127
UPdatiNg FPMS ..ot 131
Updating Data Point Declarationsccccoevvevenniieeesiiiieee s 131
Updating FPM Applications and Drivers.........ccccccvvieeeiniieeeenineen. 132
Updating Device INterfacesccccoiiiiiiiiiiieeeiiieeee e 132
Deploying FPMs on Multiple SmarServers........ccoouvieeeieiee e 135
Deploying Licensed FPM AppliCatioNSccoveeiiiiiiiiiieeeee e e e 136

Preface

7 Creating FPM Application LiCenSescccccccvvvviiiiiiiiiiiiieiieeeeee 137

LIiCENSING OVEIVIEWutiiiiiieeiiiiiiieie et e e e e e e e e e e aaeeeeaaeeeas 138
Creating an FPM Licensing TOOL............ueeiiiiiiiiiiiiiiiiee e 138
Creating a License Generator Configuration File..............c............ 138
Creating a Security DLL File........cccooveeiiiiiiiieeee e 141
Enabling License Validation in an FPM Application................c..cccuuueee. 142
Step 1: Inserting Include Directives and Macro Definitions............ 144
Step 2: Declaring Data Variablescccocveevee i 145
Step 3: Creating the License Validation Routine.............cccccceeeenes 146
Step 4: Writing the License Validation Algorithmccccceeos 148
Step 5: Implementing the License Validation Call Mechanism 152
Step 6: Compiling the Licensed FPM Applicationccccceeeennes 152
Building the Release Version of a Licensed FPM Application.............. 152
Creating FPM Application LICENSESccciiiiiiiiiiiiiiiieeeeeiiieeee e 153
Supplying FPMS t0 CUSIOMETISccouiiiiiiiiieeeee et 156
8 Localizing the SmartServer Web Interfaceccccooecvvvveeenneenn. 159
Language Localization OVEIVIEWccueeeeiiiiieeiiiiiee e 160
Creating a Language Localization Project...........cccccceeeiiiiiiiiiicinennnnne 160
Creating Localized Custom SmartServer Web Pages.........ccccccceeeeenne 165
Translating Common Properties.ccceaaiiiiiieeieeeeeeiiiiieeeee e 165
Translating Embedded Application Properties.............ccoccvveeeeeenns 170
Creating a Localized Custom SmartServer Web Page.................. 171
Creating Localized FPM Configuration Web Pagesccccocceveeeenne 173
Localizing the Language of the SmartServer Web Interface................. 176
Translating Property FileS.........coccuiiiiiiee e 176
Creating New Language Folders..........ccoocvvviviiie i 176

Editing the index.htm File to Enable a New Language on the
SMAMSEIVEL ... 177
Translating the Welcome.htm File.........cccooiiiii e 178
Translating the Menu.htm File...........ccccccoiiii, 181
Translating the Sidebar.htm Fileccooii 185
Viewing the Localized SmartServer Web Interface........................ 188
Appendix A FPM Programmer’s Reference..........ccccoeveeee . 191
OVEBIVIBW ...ttt ettt e e e e e e sttt e e e e e e e s e nnn b et e e e e e e snnntntaeeeaaeeeas 192
TeMPIALE FIlES ... 192
ROULINES. ...ttt e e e e e e e et eeaaaeeeas 192
INIEANZE() .-ttt e e e e e 193
FPM Application EXamPplecccccveeeeiiiiiiiieeeeee e 193
FPM Driver EXamPlecooooiiiiiiiiieee e 193
LAY € SRR 193
FPM Application EXamplec..oeevviieeiiiiieeeeee e 194
FPM Driver EXamPlecoooviiiiiiiiee e 194
ONTIMET() ¢ttt s e e e e 194
FPM APPICALION ... 195
FPIM DIIVET ...ciiiei ettt ettt e e e e s st e e e e e e e s e nnnnes 195
SHRUTAOWN() et a e 196
FPM Application EXampleooiiiiiiiiieeee e 196
FPM Driver EXamPlecoooiiiiiiiiieieeiiieeeee e 196
1= 1 oo [PPSR PUPRPOPRP 196
Internal FPM Data Point Methods............cccceeiiiiiieiiiiie e 196
(O g T 0o = To [TR RRRR 197
Propagate() .. .ceeeeeie i e e e 197
RESEIPIIONLY()..eei ittt e e e e nenes 198

i.LON SmartServer Freely Programmable Module User’'s Guide

Xi

Xii

FPM Application Data Point Property Methodscccccovveveeiiicennee, 198

GetDpPropertyAsString(UCPTNAME).......cccvveeeeeiee i cieiieeee e e e 199
GetDpPropertyAsString(UCPTANASNAME)eevevveeiiiiciiiiiiieeeeeeeas 199
GetDpPropertyAsTimeSpec(UCPTlastUpdate)...........cccccevveeennnns 200
GetDpPropertyAsPointStatus(UCPTStatusS) ...eeveeeeeevevceiiiiieeeeeeeeens 200
GetDpProperty AsSINt(UCPTPIONLY) ..cooveeiiiiiiiieeeieee et 201
SetDpProperty (UCPTAIIASNAME)cooviiiiiiiiiiiieieiiiieeeee e 202
SetDpProperty (UCPTPIOMLY)vvveeiieieeeiiiiieieeeee e 202
FPM Driver Data Point Property Methodsccccccoviviiiiiieeee e, 202
SetDpProperty(defOUtPUL)........occuiiiiiiie e 203
SetDPProperty(PErSiSt) ... 203
SetDpProperty(POIIRALE)cooeceeeeeeee e 203
SetDPProperty(UNit)ueeeeee oo 203
UFPT Local Variablesccovvi i 204
External SmartServer Data Point Methods.........cccccccovviiiiiiiie i, 204
LEST() v eee ettt ettt 204

(R ICT= Lo) T TP UPPT P 206

L AT 1 CCT I TP EUT PP 207
TIMEr MEtNOUS ... 207
) =1 () PRSP 208
START_TIMER() teeetteeee ettt ettt 208
0] =T [U RERR 209

Y (o o X () SRS 209

Y (o] oA | I 41T 6) SRR 210
ISRUNNING() «o oot e e e e e e e e e e ennrreee s 210
GEIMOUE() +eeeeeiiieee et 210
GetTimEOUIMIllIS() ... vvveeeiiieeie it 211
RS-232 Interface Methodscccvviiiiiiie e 211
(Y28 Vo o 1=T 1) TP PP UP PP PPPRPT 211
FS232_TOCHI() «eeeeeeeiiiiiititie ettt e e e e 212
(Y2 VA (=T Vo [PP UPPPPPPRRPP 213

Y2 VY41 (=Y (U PERR 213
(Y228 VA ol [0 1=) U PRRRR 213
RS-485 Interface Methodsceeviiiiiiiiiii e 214
(TS 1 ST) 1= 1) SRR 214
rS4A85 SEtPAraAMS() «vvvvrrreeeeeiiiierieeieeeeeess s e e e e e e s s s snrrrrereeeeeesnnnnes 214
FSAB5_TOCH () ..eeeeeeieieee et 215

7 R (=T To [T PP P PP PPPRP 216
FSABE WITE() . evveeeeiteeie ittt ettt 216
FSABS ClOSE() .oeiee ittt 217
File AcCess Methods...........coiiiiiiiiiii e 217
FOPEN() cereee e 217

L1 C=T Lo [IR 218
LEST=T) (U PSR 219
L1 G R PPERR 219

(o3 [0 F7=) SRR 220
Appendix B FPM Development and Deployment Checklist 221
Appendix C i.LON SmartServer Software License Agreement..... 225

Preface

1

Introduction

This chapter provides an overview of freely programmable modules (FPMs) and
explains the types of tasks FPMs can perform. It describes the types of custom
embedded applications and drivers you can create with FPMs. It explains how to
create and configure FPMs. It summarizes how to create FPM application licenses in
order to protect your FPM applications and make them available to customers for
order. It provides a quick-start exercise that you can use to create a simple FPM
application.

i.LON SmartServer Freely Programmable Module User’'s Guide 1

Overview of Freely Programmable Modules

Freely Programmable Modules (FPMs) are custom C/C++ applications and drivers that you can use to
customize the functionality of the SmartServer. You can use FPM applications to supplement the
built-in applications on the SmartServer and provide solutions for a number of applications, including
energy optimization, data analysis, lighting control, and room control. You can use FPM drivers as
gateways to legacy systems or nonnative networks such as BACnet and CAN (requires an external
interface, sold separately). You can then use your FPM drivers to send data from the SmartServer’s
RS-232 or RS-485 ports to an FPM application or a built-in application on the SmartServer (for
example, a Scheduler or a Data Logger).

An FPM can perform the following tasks:

Create data points on the SmartServer.

Execute code upon data point updates.

Read and write data to data points.

Control timers and execute code upon their expiration.

Read and write data to the RS-232 serial port on the SmartServer.
Read and write data to the RS-485 serial port on the SmartServer.

FPM Types

You can create two types of FPMs: FPM applications and FPM drivers. An FPM application reads and
writes values to the data points declared in it, executes code upon data point updates, reads data point
properties, and controls timers and executes code upon their expiration. A simple example of an FPM
application would be one that reads two data points and adds their values together.

An FPM driver creates data points on the SmartServer (not in the LNS database) and provides values
for them by reading and writing to the RS-232 and RS-485 ports on the SmartServer. You can use an
FPM driver to create gateways for nonnative devices. An FPM driver can then be used to supply data
from the RS-232 or RS-485 ports to an FPM application or a built-in application on the SmartServer.

Creating and Deploying FPMs

You can create FPMs using the i.LON SmartServer Programming Tool, which includes a pre-
configured C/C++ Eclipse environment and all the tools needed to write, compile, and upload, your
FPMs. After you create your FPMs, you can deploy them on your SmartServer.

Before you can begin writing your FPMs, you need to use the NodeBuilder Resource Editor to create a
user-defined functional profile template (UFPT), which defines the set of network variables and
configuration properties to which your FPM will read and write, and then reboot your SmartServer.

You can write an unlimited number of FPMs using the trial or full versions of the i.LON SmartServer
Programming Tool. To compile your FPMs and deploy them on your SmartServer, you must use the
full version of the i. LON SmartServer Programming Tool, which is included on the i. LON
SmartServer Programming Tools DVD. To order the i. LON SmartServer Programming Tools DVD,
contact your Echelon sales representative.

To begin running your FPMs on your SmartServer, an FPM programming license must be installed on
your SmartServer. To order an FPM programming license for your SmartServer, go to the i. LON
SmartServer Web site at www.echelon.com/products/cis/activate. If you plan on using Echelon
first-party FPMs or third-party FPMs on your SmartServer, you must also order a separate FPM
application license from Echelon or the third-party FPM vendor.

To deploy an FPM application on the SmartServer, you upload the FPM executable module to the
SmartServer, and then add an internal device to the SmartServer. The internal device must

use a static interface if you are integrating your FPM applications with another LNS

application such as the LonMaker tool. If you are running your network with the SmartServer
operating as a standalone network manager, the internal device can use a static or dynamic interface.

2 Introduction

http://www.echelon.com/products/cis/activate

You can create up to 10 internal FPM devices on the SmartServer. Each internal FPM device may
have multiple functional blocks, and the functional blocks may represent different instances of the
same FPM application or they may represent instances of different FPM applications. For example,
you can create an internal device that has two functional blocks that are both instances of the same
FPM application for adding the values of two data points. Alternatively, you can create an internal
FPM device that has two functional blocks, where one is an instance of an FPM application that adds
data point values, but the other is an instance of an FPM application that subtracts data point values.

See Quick-Start FPM Exercise to create a simple FPM application and deploy it on your SmartServer.

Debugging FPMs

The SmartServer uses a VxWorks® real-time operating system to run its embedded applications. If
you need a source level debugger (VxWorks 6.2 - Wind River Workbench 2.4) or access to VxWorks
system calls not encapsulated in the Echelon FPM API, contact Wind River” sales at
www.windriver.com/company/contact/index.html for more information on ordering “WindRiver
Platform for Industrial Services V3.2 for MIPS32 Processors”.

If you plan on debugging your FPMs with Wind River Workbench, you need to backup and then delete
the current iLonSystem image on your SmartServer flash disk, copy the iLonSystemWdb image on
your computer to your SmartServer flash disk, re-name the iLonSystemWdb image on your
SmartServer to iLonSystem, reboot the SmartServer, create a debug configuration of your FPM in the
i.LON SmartServer Programming Tool and upload it to your SmartServer, and then connect the
Workbench debugger to the iLonSystemWhbd image on your computer via the target server. For more
information on how to do this, see Chapter 5, Creating Freely Programmable Modules.

If you are not using Wind River Workbench to debug your FPMs, you can still perform some
debugging by adhering to the following guidelines when developing your FPMs:

1. Physically connect the computer running the . LON SmartServer Programming Tool to the i.LON
console port using an RS-232 null modem cable. This enables you to use a Terminal emulator
such as Windows HyperTerminal to view the . LON console port and debug your FPMs during
runtime. After the FPM is initialized you can use Telnet to view the i.LON console port.

2. Back up the FPM project frequently. Always make a back up after you make significant changes
to an FPM application and successfully compile it.

3. Bracket comments around those portions of the FPM application that you have written. For
example, you can do the following:

// mycode —begin - ———-—-——————— -
outl=1inl+in2;
// mycode—-end -—-————-———— -

4. Add your user help functions to the UFPT<FPM>_Ultils.cpp file (this file is created when you
create a new FPM project). This further isolates your code for debugging, and it enables you to
port the code over to another FPM project.

5. Insert printf()statements in your code frequently. This enables you to do some debugging
with the console port of the i.LON during runtime, as the console port will receive the printf
() statements. For example, you can do the following:

printf ('[%s %i] value of %s: %d",

__FILE__,

__LINE__,
inl._GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname),
*inl);

Note: The console port displays the status of your FPM during a reboot.

It is especially important to follow these guidelines because the compiler errors you may receive may
only have a generic description that does not indicate which line of code caused the error. In addition,

i.LON SmartServer Freely Programmable Module User’'s Guide 3

http://www.windriver.com/company/contact/index.html

the errors may not appear on the actual line of code causing the error; instead, an error may appear one
or two lines above the incorrect code.

Creating FPM Application Licenses

You can create FPM application licenses and make your FPMs available to customers, who can
implement your third-party FPMs on their SmartServers. To create FPM application licenses, you
need to create an FPM licensing tool, enable license validation in your FPM application, build a release
version of your licensed FPM, use the i.LON License Generator program to create FPM license files,
and then provide the FPM licenses and other required files to customers. Customers must order a
separate FPM application license from you to use one of your FPMs on their SmartServers.

The i.LON SmartServer Programming Tools includes an i.LON License Generator that you can use to
create your own FPM application licensing tool. The i.LON License Generator includes the i. LON
License Generator user interface, a sample security DLL file (LicenseSecurityHMACMDO5.dII), and a
sample XML file (iLONLicenseGenValuesSample.xml) that provides the structure and sample pre-
defined values of the i.LON License Generator user interface. To create your FPM application
licensing tool, you need to build a security DLL file named LicenseSecurity.dll, and create a license
generator configuration file named iLONLicenseGenValues.xml that has pre-defined values for the
i.LON License Generator user interface. Note that if you cannot build the security DLL file, you can
just re-name the sample DLL file LicenseSecurity.dll; however, you are solely responsible for the
creation of the security DLL file.

You also need to modify your FPM application so that it can check whether a customer’s SmartServer
has a valid FPM license file for running your FPM. This entails writing a separate license validation
routine in your FPM application that (1) checks whether the Lock ID (MACID, LUID, or other
user-defined lock type) specified in the FPM license file matches the one on the customer’s
SmartServer, and (2) checks whether the license key in the FPM license file is valid.

Once you have created the security DLL and license generator configuration files and you have
enabled license validation in your FPM application, you can use the i.LON License Generator user
interface to create FPM application licenses. The FPM application license is an XML file that must be
on a SmartServer in order for it to run your FPM. This means that you can make your FPMs available
to customers, while protecting your FPMs from unauthorized use or piracy.

A customer who orders an FPM application from you must install the FPM application license for that
FPM on their SmartServer. If a customer attempts to run your FPM application without installing the
FPM license file on their SmartServer, the SmartServer will report a license error and the FPM will not
run on the SmartServer. This means that a customer running one of your FPMs must have two licenses
installed on their SmartServer: an FPM programming license from Echelon and the FPM application
license from your company that you generated for that FPM.

See Chapter 7, Creating FPM Application Licenses, for more information on creating FPM licenses
and enabling license validation in your FPM application.

Quick-Start FPM Exercise

The following section describes how to create a simple FPM application called UFPTMath and then
deploy, test, and connect the FPM on your SmartServer. The Math application adds two SNVT_count
input data points and stores the result in a SNVT_count output data point. To create, deploy, test, and
connect the Math FPM application, you perform the following steps:

1. With the NodeBuilder Resource Editor, create a user-defined functional profile template (UFPT)
for the FPM, and then generate your company’s FPM resource file set. Copy your company’s
updated FPM resource file set to the root/lonWorks/types/User/<YourCompany> folder on the
SmartServer flash disk.

2. With a text editor such as Notepad, create a model file (.nc extension) in which you declare all the
data points in the UFPT, and a functional block that implements an instance of the UFPT. With
the i.LON SmartServer LonWorks Interface Developer tool, generate a device interface (XI F) file

4 Introduction

from your model file. Copy the XIF to the root/lonWorks/Import/<YourCompany> folder on the
SmartServer flash disk.

3. With the i.LON SmartServer Programming Tool, create a new FPM project from the UFPT you
created in step 1.

4. With the i.LON SmartServer Programming Tool, write the FPM application and then build it.

Note: The full version of the i.LON SmartServer Programming Tools must be installed on your
computer to build the FPM.

5. On your SmartServer, deploy the FPM. To do this you upload the FPM application to the
root/modules/User/<YourCompany>folder on the SmartServer flash disk and then reboot the
SmartServer. After the SmartServer has rebooted, you add a new internal device to the
SmartServer that uses the device interface (XIF) file that you created for the FPM.

6. On your SmartServer, test the FPM. To do this, you open the View — Data Points Web page, add
the input and output data points in the FPM application, update one of the input data points, and
observe that the output data point is updated accordingly.

Note: An FPM programming license must be installed on your SmartServer for the FPM to run
on your SmartServer.

7. On your SmartServer, create Web connection between the data points declared in your FPM
application and the data points on the SmartServer, and then use the View — Data Points Web
page to test that the Web connections are updating the FPM data points.

Tip: Review the guidelines for creating FPMs that are listed in the Debugging FPMs section. You
should follow these guidelines in order to help debug your FPM applications.

Step 1: Creating and Copying the FPM Template

You can create the template to be used by the FPM. To create a new template, you create a new
user-defined functional profile template (UFPT) in the NodeBuilder Resource Editor (the NodeBuilder
Resource Editor is included with the i.LON SmartServer software). After you create a new UFPT, you
select the standard and user-defined network variable and configuration property types (SNVTs,
UNVTs, SCPTs, and UCPTs) to which the FPM will read and write. Once you have added all the data
types to be use by the FPM, you generate the updated FPM resource file set in which the template was
created and copy your resource files to the root/lonWorks/types/User/<YourCompany> folder on the
SmartServer flash disk

To create the FPM template, and generate and copy the updated FPM resource file set, follow these
steps:

1. Start the NodeBuilder Resource Editor. To do this, click Start, point to Programs, point to
Echelon NodeBuilder Resources, and then click NodeBuilder Resource Editor.

Note: If NodeBuilder Resource Editor is not installed on your computer, you can install
NodeBuilder Resource Editor 3.14 from the i.LON SmartServer DVD or the i.LON SmartServer
Programming Tools DVD. See the i.LON SmartServer User’s Guide for more information on
installing the NodeBuilder Resource Editor.

2. Create a new resource file set for your company. If you plan on integrating your FPM
applications with an LNS application such as the LonMaker tool, you need to create a new scope 5
resource file set. To create a new resource file set, follow these steps:

a. Right-click your company’s resource file set and click New Resource File Set on the shortcut
menu. The New Resource File Set dialog opens

Note: If your company does not already have a folder under the LonWorks/types/User
directory on your computer, you need to create one. This folder will be used to store the
resource file set you will create for your FPMs. To create a new folder, right-click the
LonWorks/types/Ldrf.Cat file and then click Add Folder on the shortcut menu.

i.LON SmartServer Freely Programmable Module User’'s Guide 5

10.

11.
12.

13.

b. If you plan on integrating your FPM applications with an LNS application such as the
LonMaker tool, you should select 5 in the Scope box (this sets the scope to device class,
manufacturer, usage, and channel type).

c. In the manufacturer (MMMMM) field of the Program ID box, enter your 5-digit
manufacturer ID in hexadecimal format.

Note: If your company does not have a manufacturer ID, you can get a temporary
manufacturer ID from LonMark at www.lonmark.org/mid. In addition, if your company has
many FPM developers, it is recommended that you request temporary manufacturer IDs for
them. After you obtain your temporary manufacturer ID, you can enter it in the MMMMM
field of the Program ID box.

d. In the format (F) field of the Program ID box, enter 9 (this sets the Standard Development
Program ID flag).

e. Inthe channel (TT) field of the Program ID box, enter 04 if you have an FT-10 model of the
SmartServer or enter 10 if you have a PL-20 model of the SmartServer.

f. Inthe Resource File Set Name box, enter “FPM Development”, “FPM Examples”, or
something comparable

g. Click OK.

Expand the folder containing your company’s FPM resource file set, right-click the Functional
Profile Template folder, and then click New FPT on the shortcut menu.

Enter UFPTMath for the name of the new UFPT you created.

Double-click UFPTMath, or right-click it and click Open on the shortcut menu. The Modify
Functional Profile dialog opens.

Expand the LonWorks/types/STANDARD directory, expand the Network Variables folder, and
then click and drag the SNVT_count data point to the Mandatory NVs folder. In the Name
property, enter inl.

Repeat step 6, but name the new data point in2.
Repeat step 6, but name the data point outl and select Output under the NV Settings box.
Click OK.

Generate your company’s updated FPM resource file set. To do this, right-click your company’s
FPM resource file set, and then click Generate Resources Set on the shortcut menu. The
Generate Resources Set dialog opens.

Click Yes to generate the updated FPM resource file set.

Copy your company’s updated FPM resource file set from the LonWorks\Types\User\<Your
Company> folder on your computer to the root/LonWorks/Types/User/<Your Company> folder on
the SmartServer flash disk. Note that you may need to create your User/<YourCompany> folder
on the SmartServer flash disk before copying your resource file set.

Reboot your SmartServer using the SmartServer Web pages or the SmartServer console
application.

e To reboot your SmartServer using the SmartServer Web pages, right-click the local
SmartServer, point to Setup, and then click Reboot on the shortcut menu. The Setup —
Reboot dialog opens. Click Reboot to start the reboot.

e To reboot your SmartServer using the SmartServer console application, enter the reboot
command. For more information on using the SmartServer console application, see the i.LON
SmartServer User’s Guide.

Introduction

http://www.lonmark.org/mid

For more information on creating UFPTs for your FPMs, see Chapter 3, Creating FPM Templates.
For more information on using the NodeBuilder Resource Editor, see the NodeBuilder Resource Editor
User’s Guide.

Step 2: Creating and Copying the Device Interface (XIF) File

You can create the device interface used by your FPM. To create the device interface, you use a text
or programming editor such as Notepad to write a model file (.nc extension). In this model file, you
declare all the network variables and configuration properties that you added to the UFPT, and you
declare a functional block that implements an instance of that UFPT. After you create the model file,
you open a Command Prompt window and use the i.LON SmartServer LonWorks Interface Developer
tool to convert your model file to a device interface (XIF) file. You then copy the XIF (.xif extension)
to the root/lonWorks/Import/<YourCompany> folder on the SmartServer flash disk.

To create the device interface (XIF) file your FPM application, follow these steps:
1. Open a text or programming editor on your computer such as Notepad.

2. Enter or copy the following code, which does the following: declares the three SNVT_count
network variables in UFPTMath, declares a functional block that instantiates UFPTMath, lists
implementations of the three SNVT_count network variables in UFPTMath, and defines a name
and an external name for the functional block.

network input SNVT_count inl;
network input SNVT_count in2;
network output SNVT_count outl;

fblock UFPTMath {
inl implements inl;
in2 implements in2;
outl implements outl;
} fbMathFunction external _name (‘'Math Function™);

3. Save your model file on your computer. This example stores a model file named “math.nc” in a
folder named “ModelFile” that has been created under the C:\LonWorks directory. The file path of
the source file in this example is therefore C:\LonWorks\ModelFile\math.nc.

4. Create a <YourCompany> folder for your company under the C:\LonWorks\Import folder if one
does not already exist. This is where the XIF generated by the i.LON SmartServer LonWorks
Interface Developer tool is to be stored.

5. Install the full version of the i. LON SmartServer Programming Tools from the i. LON SmartServer
Programming Tools DVD if it is not already installed on your computer. This will install the
i.LON SmartServer LONWORKS Interface Developer tool. You will use this command line
interface in the next step to generate the device interface (XIF) file used by your FPM. For more
information on installing the i. LON SmartServer LonWorks Interface Developer tool, see Chapter
2, Installing i.LON SmartServer Programming Tools.

6. Convert your model file to a XIF using the i.LON SmartServer LonWorks Interface Developer
tool. To do this, open a Command Prompt window and then type the following command:

libilon --source=<model file path> --pid=<program ID> --
out=<destination path> --basename=<XIF name >

For this example, you would type the following at the command prompt (you need to replace the
sample program ID with your company’s program ID, and you need to replace the
“YourCompany” folder in the C:\LonWorks\Import directory with your company’s folder):

libilon --source=C:\LonWorks\ModelFile\Math.nc --
pid=9F:FD:3E:00:00:00:04:00 --out=C:\LonWorks\Import\YourCompany
--basename=Math

i.LON SmartServer Freely Programmable Module User’'s Guide 7

This creates device interface files named “Math” (.xif and .xfb extensions), and stores them in the
C:\LonWorks\Import\<YourCompany> folder.

Note: You need to separate the command switches (--source, --pid, —— out, and --
basename) with spaces, but you do not insert spaces between the command switch and the
specified argument.

Copy the XIF (.xif extension) generated in step 5 to the root/lonWorks/Import<YourCompany>
folder on the SmartServer flash disk. Note that you may need to create the <YourCompany>
folder on the SmartServer flash disk before copying the XIF.

For more information on creating XIFs for your FPMs, see Chapter 4, Creating FPM Device Interface
(XIF) Files.

Step 3: Creating the FPM Project

You can create the FPM project using the i. LON SmartServer Programming Tool. To create a new
FPM project, you make your SmartServer accessible to the i. LON SmartServer Programming Tool,
and then create a new FPM project from the resource file set you added to the SmartServer flash disk.
To create an FPM application, follow these steps:

1.

Start the i.LON SmartServer Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer Programming Tools, and then click i.LON SmartServer
Programming Tools. The i.LON SmartServer Programming Tool opens.

Locate the LonMark Resource View at the bottom left-hand corner of the document window.

In the Server/IP-Address box in the LonMark Resource View, enter the hostname or IP address
of your SmartServer and then click the Go button to the right.

Expand the SmartServer icon and then expand the LonMark folder. The resource files in the
root/lonWorks/types folder on your SmartServer flash disk are shown.

Expand your company’s FPM resource file set, expand the Functional Profile Templates folder,
right-click the <company program ID>.UFPTMath template, and then click New FPM
Application on the shortcut menu.

(@) LorMark Resource View X A s 7 =0

k
£

ServerfIP-Address: | 10.2.124 52

= & 10.2.124.82
=% LonMark.
@ Troot/lonworks/typesistandard. byp
@ froot/lonworks typesiuser fechelonfbas_controller typ
@ frootflonworks/typesfuser fechelon/dc0131 typ
@ frootflonworks/typesfuser fechelon/dc0519, typ
@ Iroot/lonworks/typesiuser fechelonfechelon.bvp
@ Troot/lonworks/typesiuser fechelonfisilon.bvp
@ Iroot/lorworks/typesiuser fechelonfmbus_integrator, tyvp
@ Iroot/lorworks/typesiuser fechelonfminikit, byp
@ Iroot/lorworks/typesiuser fvourcompany [Fprm development. byvp
ﬁ Configuration Property Types
= H Functional Profile Templates
'—3 AOFFD3E0000000000[3], UFPTHYAC Cantroller
'-3 #OFFD3E0000000000[3]. UFPThyacTempSensor
B3 4 0FFD3E0000000000[5], UIFPTMath
% Mebwark Yariable Types ‘f; Connection settings. ..

OB B BB EE-EE

2 New FPM Application. ..

_'}) Import all Declarations

Introduction

6. The New Project dialog opens.

& New Project @

Managed Make C+ + Project

Create a new Managed Make C++ Project.

=

Project name: | FFFDAENN00000000[3]. UFFTMath

Use default location

Cancel

7. Click Finish to accept the default settings.

Tip: Creating an FPM project following these steps ensures that the name of your FPM project
follows the FPM naming convention, which is <company program ID>UFPT< FPT Name>.
This naming convention provides for FPMs with unique namespaces.

8. A new UFPTMath FPM project folder with the name specified in step 4 is added to the C/C++
Projects view, and the source file view opens to the right of the C/C++ Projects view.

& C/C++ - UFPTMath.cpp - Eclipse SDK

File Edit Refactor Mavigate Search Project FPM Run ‘Window Help
D= ~ 2 ! 3
-He (€ & (G- AR
%CIC-H— Projects &3 Mavigator

= SFFD3E0000000400[5] UFFTMath

Server(IP-address: | 10.2,124.52

= & 10.2.124.82
=% LonMark
@ Jrootflonmorks typesistandard.byp
Jrootflonworks typesfuser fechelon/bas_controller, byp
@ Jrootflonwarks typesfuser/echelon/dc0131 byp
@ [rootflonworksitypesfuser fechelon/dc0S19 kyp
@ roctflonworkstypesjuser fechelon/achelon. byp
i
i
i
i

' LonMark Resource Yiew &2 ¥ & E:'l i ;*.i .Z w>c° =

@ Irootflonwarks typesfuser/echelon/isilon byp

@ [rootflonworksitypesfuser fechelon/mbus_inkegrator kyp
@ Jrootjlonwarksjtypesfuserjechelonfminikt. typ

@ Jrootflonmarks typesfuser /vourcompanyfpm development.byp
f Configuration Property Types

= Functional Profile Templates

L:? #9FFDIE0O00000400[5]. UFFTHYAC Controller
(5§ #9FFD3E0000000400[5]. UFPTMath

(5 #9FFO3E0000000400[5].UFPTMathadd

E? #OFFD3E0000000400[5]. UFPTMathSubtract
:? #9FFD3EDN00000400[S]. UFPTSwitchEncoder
Metwork Yariable Types

[B e B B B

S EE

B

P,

F-O0-G- &y

| et | ”

using namespace Swartierver::FPM LIE VERSICH; ™
using namespace _SFFD3E0000000400_5_ UFPTHath_AFP;

i
/F = section datapoint wvariable declarations. DO NOT REMOVE T
DECLARE | _0000000000000000_O_::SMVT sount, inl, INPUT DB |
DECLARE({ _0000000000000000_O SNVT_count, inZ, INPUT_DP |
DECLARE| _0000000000000000 0 ::3NVT count, outl, OUTPUT DFP |

//{ <= section datapoint variable declarations. DO NOT REMOVE T

i

i

/¢ ==» the one and only instance

i

static FPM::TS3tarter<CUFPTHath> STARTER(FPM MODULE NAME);

i

4/ ==» extern "C" commwands (tveicallv not needed) s

< | >
|2 #roblems 57 - Console | Properties H T =0
O errars, O warnings, 0 infos

Descripkion
< | Es

“writable Smart Insert | 26: 2 Building workspace: (0% (Com =N

9. You can observe that the Data Point Variable Declarations section automatically includes
DECLARE statements for each data point in the .UFPTMath template.

i.LON SmartServer Freely Programmable Module User’'s Guide 9

For more information on creating FPM projects, see Chapter 5, Creating Freely Programmable
Modules.

Step 4: Writing the FPM Application

You can write the FPM application using the i. LON SmartServer Programming Tool. This mainly
entails specifying the logic to be executed on the data points declared in the application. For this
exercise, you create a simple addition algorithm in the Work () routine of the UFPTMath.cpp file.
Whenever one of the input data points is updated, the algorithm adds the two input data points and
stores the result in the output data point. Note that the Work () routine is one of four routines in the
FPM application. The other three routines are Initialize(), OnTimer(), and Shutdown().

e The Initialize() routine is executed when the FPM application is started or enabled. You
can initialize data point values and start timers in this routine.

e The Work() routine is executed when data points declared in the FPM application are updated.
You can write values to the data points declared in your FPM application and read data point
properties in this routine.

e The OnTimer () routine is executed when a timer created in the Initial ize() routine
expires. You can read data point properties in this routine.

e The Shutdown() routine is executed when the FPM application is stopped or disabled. You can
stop timers and perform any required cleanup in this routine.

To write and build the FPM application, follow these steps:

1. Inthe UFPTMath.cpp file, find the Work () routine.

2. Inthe Work() routine, enter the following code:
void CUFPTMath: :Work()

if (Changed(inl) || Changed(in2))

outl=1inl+in2;
printf('%i +%i =%1 /n", *inl, *in2, *outl);

}

3. Build the FPM application. To do this, click File and then click Save. The FPM executable
module (.app extension) is updated. If the build is not performed, click Project and then click
Build Project. You can then click Project and select Build Automatically so that your FPM
applications are built automatically when you save them.

Note: If a dialog appears prompting you to enter a license, you need to install the full version of
the i.LON SmartServer Programming Tools on your computer in order to build your FPM
application. To order the full version of the i.LON SmartServer Programming Tools, contact your
Echelon sales representative.

For more information on writing FPM applications and FPM drivers, see Chapter 5, Creating Freely
Programmable Modules.

Step 5: Deploying the FPM Application on a SmartServer

10

You can deploy your FPM application on your SmartServer. To do this you upload your FPM
application to the SmartServer flash disk and then reboot the SmartServer. After the SmartServer has
finished rebooting, you configure the FPM application on your SmartServer. Configuring the FPM
application entails creating a new internal device in the tree and then adding a dynamic functional
block to the internal device that uses the UFPT defined for the FPM.

Introduction

Uploading the FPM Application
To upload the FPM application to your SmartServer, follow these steps:

1. Create a User/<YourCompany> folder under the root/modules folder on the SmartServer flash disk
if one does not already exist. This is where the executable module generated by the i. LON
SmartServer Programming Tool should be stored.

2. In the C/C++ Projects view, expand the Release folder, right-click the <company program
ID>.UFPTMath.app file, and then click Transfer to i.LON SmartServer in the shortcut menu.

€ CJ/C++ - UFPTMath.cpp - Eclipse SDK EEX

File Edit Refactor Mavigate Search Project FPM Run ‘Window Help

. p— . D
] ¥ EI®- g -G B 00U P B o 5 [RRce |
= B | [& UFPTMath.cpp 52 S 8lxm~>r &8
= * HCMINFRINGEMENT, AND THEIR EQUIVALENTS. -~
< V| *
5112 SrFDAE0000000000[3]. LUFETHath U ———
(= Includes
=2 Release)
[et #include "UFPTHath.h

/f = section dependent includes
Mew ¥ lent includes
00oooo0ooooooo_o_:

ctdt.o - [mipsbe]

UFPTMath_Utils.o - [mipsbe] Open
) UFRTMath.o - [mipsbe "
. LUFPTMath.d Lripebe] Open WD ' ltserver: :FPU_LTE_VERSTON;
|2 UFPTMath.dUFPTHath.o Aetive Build Configuration y [D3E0O0O000000_3_ UFPTHath AFF;

2] UFPTMath_utils.d

=| Cof
|=) URPTMath_Utils, dUFPTMath_Utils.o 15 topy
[Z] ctdt.detdt.o
& makefile 3 Delete int wvarisble declarations. DO NOT RENCVE 1
- Move 000000 0_::SNVT count, inl, INPUT DP)
% LonMark Resource Yiew 5% Rename 000000_0_: : SNVT_count, in2, INFUT DF)
28 5B 000000 0_::SNVT count, outl, OUTFUT DP)
E e e P T
Server/IP-addressi | 10,2, 124,87 E A int wvariable declarations. DO NOT REMOVE 1
g Export...
. v
Cl ? 1,?'2L12;82k 4 Refresh >
o Add Bookmark. . e =
@ Jrootflonworks typesistandard.byp erkies i a
@ Jrootflonwarksitypesfuser/echelon/bas_ca m Tr
Irootjlonworkstypes/user/echelon/de0131 m Remave From i.LON SmartServer. .. Resource Path Local

& @ Jrootflonmarkstypesfuser/echelon/dc0512

&

Run As 4
@ Jrootflonworks typesfuser fechelon/echelon Debug As »
@ Jrootflonwarks typesfuser/echelon/isilon . b
@ [rootflonworksitypesfuser fechelon/mbus_j
@ rootflonworks{typesuser fechelon/minikit, .
=] @ Jrootflonmarks typesfuser fvaurcamparnyfi Team ,
B8 Configuration Property Types Compare 'ith
=B Functional Profile Templates Replace With 4
. [FE WOEERREANMNANANANT 1 |IEDTLL -
< Properties 5
B4 [SFFD3E0000000000[3], UFPTMathyReleass/ # 9FFD3E0000000000[3]. UFPTMath app

3. The Install FPM Module dialog opens with the Deployment Settings window.

i.LON SmartServer Freely Programmable Module User’'s Guide 11

12

& Install FPM Module [#9FFD3EOD00000400[5].UFPTMath.app | X]

Deployment Settings

Specify remate site server address, logon information, destination folder,

7 l Mext = ” Finish H Cancel

FTP settings:

Host: ho.z.124.62 Ftp Port: | 21
User: ilor

Password: R

Destination Dir: Irmodulesfuser yourcompary

If wou can connect ka the i.LOMN SmartServer but vou have difficulties
to setup a file transfer, wou should enable passive mode,

Passive Mode: [

Rehoak: i web Port: | &0

Create default Configuration web-page:
iwebjconfig/FBISFFDEENONN000400[5]. UFPTMath, htrm

Default web-page: [

Enter the following information if different than the defaults:

The IP address or hostname of the SmartServer to which the FPM is to be uploaded. The
default is the SmartServer IP address or hostname entered in the LonMark Resource View.

The user name and password used to access the SmartServer FTP server. The default user
name and password are both “ilon”.

The directory on your SmartServer flash disk to which your FPM application is to be stored.
The default directory is root/modules. You should create a root/modules/
User/<YourCompany> folder on the SmartServer flash disk and store your FPM application in
that folder.

The port used to access the FTP server on your SmartServer. The default port is 21.

The port used by your SmartServer to transmit and receive SOAP/HTTP requests. The
default port is 80, but you may change it to any valid port number. Contact your IS
department to ensure your firewall is configured to allow access on this port.

See Chapter 6, Deploying Freely Programmable Modules, for more information on the settings in
this dialog.

Click Finish. The FPM application is uploaded to your SmartServer. You can use the console
port to verify that the FPM is being uploaded to your SmartServer. Once the FPM application has
been uploaded, you can proceed to the next step, which is creating an internal FPM device.

Note: If FPM Programmability is not licensed on your SmartServer, the console port will display
messages stating that the FPM license is invalid, the FPM feature is not properly licensed, and
FPM tasks cannot be created. To order an FPM programming license for your SmartServer, go to
the i.LON SmartServer Web site at www.echelon.com/ilon.

Introduction

http://www.echelon.com/ilon

Creating an Internal FPM device

To create an internal FPM device on your SmartServer, follow these steps:

1. Expand the Net network, right-click the LON channel, and then select Add Device on the shortcut

menu.

Navigate

& General O Driver

3 gls LAN

£ & SmartServer
"' Remote Access

E1257 Net
=

¥l) VirtC
2 my _mails
[+ & SmartSer
2 10.1.0.21
(& 10.2.120

Properties
nain.com

Delete

Rename

Add Device
Add Router

The Create Devic

A

e dialog opens.

Enter a meaningful name for the device such as “Math Device”.

In the Location property, select Internal.

and then select the XIF for your Math FPM.

oo

= { Add

Property Value

Device

Name Netr’LDN;’|M3Th Device
File Mame Sroot/lonWorks/Import/YourCompany,/Math.xif

Location () External @ Internal

= @ LonMark (XIF)
froot/lonWorks/Import/Echelon/iLON100/
froot/lonWorks/Import/Echelon/LonPoint/Version2/
Select Jroot/lonWorks/Import/Echelon/LonPoint/Version3/
[froot/lonWorks/Import/Echelon/FPM/
= frootflonWorks/Import/YourCompany/
[¢ math
Template
[0K][Cancel]

r |

6. Click OK. A Math Device (Internal) device is added to the bottom of the LON channel tree.

Expand the LonMark (XIF) folder, expand the root/lonworks/import/<YourCompany> folder,

7. Click Submit. You must wait for the SmartServer to instantiate the XIF file used for the internal

Math device. The time it takes depends on the size of the XIF. Once the XIF has been

i.LON SmartServer Freely Programmable Module User’'s Guide

13

instantiated, you can expand the Math Device (Internal) device and the Math Function
functional block to show the data points in the FPM application.

Select Devices

@ General O Driver
3l LAN
El & SmartServer
T Remote Access
SEET
H=< LON
i iLON App (Internal)
@ LtalLdv (Internal)
@ RNI (Internal)
=l & Math Device (Internal)
= 4% Math Function
inl
in2
P out1
{§ VirtFb
= ¥ VirtCh
H 2 my_mailserver.my_domain.com

Step 6: Testing the FPM Application

After you deploy an FPM application and reboot your SmartServer, you can test your FPM application
using the View — Data Points Web page. To do this, you open the View — Data Points Web page, add
the input and output data points in the FPM application, update one of the input data points, and
observe that the output data point is updated accordingly.

To test an FPM application on your SmartServer, follow these steps:
1. Click View and then click Data Points. The View — Data Points Web page opens.
2. Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

3. Under the Math Function functional block, click the inl, in2, and outl data points. The data
points appear in the View — Data Points Web page.

. .
View - Data Points
Select Data Point
Show Graph
@ General O Driver
32% LAN - Name Format Value Unit Priority Status
FI & SmartServer 0 Net/LON/Math Device/Math Function/inl SNVT_count 0 B B units 255 ONLINE
&' Remote Access
25 Net 1 Net/LON/Math Device/Math Function/in2 SNVT_count 0 E] B units 255 ONLINE
=< LON 2 | Net/LON/Math Device/Math Function/outl SNVT_count 0 B B units 255 ONLINE
£ iLON App (Internal)

€ Ltal dv (Internal
@ RNI (Internal)
El & Math Device (Internal
=1 4F Math Function
: inl
in2
| outi

[b VirtFb

4. Enter a different value for either or both of the inl or in2 data points. Observe that outl data
point is updated and displays the sum of the inl or in2 data points.

14 Introduction

View - Data Points

Select Data Point

@ General O Driver
E sl LAN
= & SmartServer
T Remote Access
B et
=5 LON

Name
Net/LON/Math Device/Math Function/in1
Net/LON/Math Device/Math Function/in2

Net/LON/Math Device/Math Function/out1

Show Graph
Format
SNWT_count
SNWT_count

SNVT_count

Value

Pl e
T -
ETT e

Priority
255
255

255

Status

OMLINE

OMLINE

OMNLINE

£ iLON App (Internal)
® @ Ltaldv (Internal
@ RNI (Internal)
[l & Math Device (Internal
E1{_} Math Function
: in1
in2
b outl

[b VirtFb

For more information on testing FPMs, see Chapter 6, Deploying Freely Programmable Modules on a
SmartServer.

Step 7: Connecting the FPM Data Points

After you verify that your FPM application is functioning properly, you can use Web connections or
LONWORKS connections to connect the data points declared in your FPM device to the data points on
the SmartServer or to the data point of external devices. Note that the SmartServer must be operating
in LNS mode (LNS Auto or LNS Manual) in order to create LONWORKS connections.

For this quick-start exercise, you will use Web connections to connect the data points in your FPM
application to data points on the SmartServer. To do this, you create three dynamic SNVT_count data
points, and you create Web connections between the data points declared in your FPM device and the
dynamic data points you created on the SmartServer, You can then use the View — Data Points Web
page to test that changes made to the dynamic data points on the SmartServer are updating the inl and
in2 data points declared in the FPM device and that the outl data point in the FPM device is updating
the dynamic data point on the SmartServer.

To connect the data points declared in your FPM to the data points on the SmartServer, follow these
steps:

1. Create a dynamic SNVT_count data point on the VirtFB functional block under the i.LON App
(Internal) device. To do this, follow these steps:

a. From the tree, expand the Net network, expand the LON channel, and then expand the i.LON
App (Internal) device to show the VirtFB functional block at the bottom of its tree.

b. Right-click the VirtFB functional block and then click Add Data Point on the shortcut menu.

i.LON SmartServer Freely Programmable Module User’'s Guide 15

16

2 gfs LAN

®

Navigate

General O Driver

E & SmartServer
T Remote Access
Bl Net
=€ LON
= E] iLON App (Internal)

- Ltaldv
@& RNI (Int
El & Math D¢ Duplicate

Node Object
Digital Input 1

l [Z] Diqital Input 2
(&) Digital Output 1
(&) Digital Output 2
Real Time Clock
4} VirtFb

Properties

= 4§ Math
inJ
ind Rename

p» ou

= 4 virtFl Add Data Point

Delete

The Add Data Point dialog opens.

In the Name property, enter a meaningful name such as “countl”.

In the Select property, expand the Dynamic node, expand the root/lonworks/types directory,
expand the standard resource files folder, expand Network Variable Types, and then click
the SNVT_count data point.

P Add Data Point

Name

Type

Select

Property Value

Met/LON/ILON AppNirtFw|cnunt1
#0000000000000000[0].5MVT_count
= (@ static
= @ bynamic
= frootflonworks/ftypes/
= [# standard

)l Configuration Property Types
= 2 Network Variable Types

E SNVT_ISO_7811

SNVT_ISO_7811#L0

@ SNVT_abs_humid

@ sNvT_abs_humid#sI
@ snvT_abs_humid#us

@ SNVT_address
@ snvT_alarm

Ok

][Cancel

Introduction

f. Click OK. A data point with the name you specified in step d is added underneath the
VirtFB functional block.

g. Click Submit.
2. Create two copies of the dynamic SNVT_count data point that you created in step 1.

a. Right-click the dynamic SNVT_count data point, and then click Duplicate Data Point on the
shortcut menu.

b. The Duplicate Data Point dialog opens.

c. Inthe Number of Copies property, enter 2.

P Duplicate Data Point
Property Value
Original Net/LON/ILON App/VirtFb/countl
Copy Mame Net/LON/iLON App/virtFh/|Copy of count?
Number of
Copies 2|
Ok Cancel
| I))

d. Click OK. Two copies of the data point named “Copy of <DP name>" are added underneath
the VirtFB functional block. Note that the second data point copy will have an index
appended to its name.

e. Click Submit.
3. Re-name the two data point copies you created in step 2. To do this, follow these steps:
Right-click the first data point copy, and then click Rename on the shortcut menu.
b. The Enter Name dialog opens.

c. Enter a meaningful name for the first data point copy such as “count 2”.

KB
P Enter Name
Please enter Hame
|cuunt 2
OK Cancel
[u))

d. Click OK. The data point is re-named to the name specified in step c.
e. Click Submit.

i.LON SmartServer Freely Programmable Module User’'s Guide 17

18

f. Repeat steps a—e for the second data point copy. In step c, enter a meaningful name such as

“total count”.

From the tree in the sidebar (left) frame, right-click the “Net/LON/i.LON App
(Internal)/VirtFB/count1” data point and then click Add Binding in the shortcut menu.

Navigate

@& General O Driver
S gfs LAN
= & SmartServer
T Remote Access
iiNet
=< LON
= 2 iLON App (Internal)
(] Node Object
(2] Digital Input 1
(2] Digital Input 2
(4] Digital Output 1
(4] Digital Output 2
Real Time Clock
= 4 VirtFb
: countl
count2 Properties
| total ¢ .
® - Ltaldv (Intd Duplicate
& @ RNI (Internz pojate
=l & Math Device
E“l‘,‘l‘ijtt Fun Rename
inl Change Functional Block »

in2

o oouta
- E 4P VirtFb
% VirtCh

Add Binding

Show Value

The Configure — Web Binder Web page opens and the hostnames of the local SmartServer and
any remote SmartServers added to the LAN, which are collectively referred to as Webbinder

Destinations, appear in the application frame to the right.

From the Webbinder Destinations tree on the right frame, expand the i. LON Webbinder
Destination node, expand the Net network, expand the LON channel, and then expand the Math
Device (Internal) device, and expand the Math Function functional block to show its “inl”,
“in2”, and “outl” data points. Click the “Net/LON/Math Device (Internal)/Math Function/in1”
data point to specify it as the target data point. A reference to the target “in1” data point is added
underneath the “countl” source data point in the tree in the left frame.

Select Source Data Point Select Target Data Points
@ General O Driver = & Web-Binder Destinations
EIQE LAN EI-ér'SmartServer
= & SmartServer =35 Net
T Remote Access B =< LON
2% Nat 4 iLON App (Internal)
é!“_LQN 4 Ltaldv (Internal)
BT 3 RNI (Internal)
(7] Node Obiect E &) Math Device (Internal)
& (£] Digital Input 1 = 4_F Math Function
(£] Digital Input 2 :@nl
(4] Digital Output 1 in2
(&) Digital Output 2 [out1
= (&) Real Time Clock B L} VvirtFb
= {3 VirtFb &% virtCh
= 3| countl
| SmartServer:Net/l ON/Math Device/Math Function/in1
‘count2
= 3| total count
Click Submit.

Following steps 47, create a Web connection between the “VirtFB/count2” data point in the tree
in the left frame (the source data point) and the “Math Function /in2” data point in the Webbinder

Destinations tree in the right frame (the target data point).

Introduction

9. Following steps 4-7, create a Web connection between the “Math Function/outl” data point in the
tree in the left frame (the source data point) and the “VirtFB/total count” data point in the
Webbinder Destinations tree in the right frame (the target data point).

10. Click View and then click Data Points. The View — Data Points Web page opens.
11. Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

12. Under the Net/LON/ Math Device (Internal)/VirtFB functional block, click the countl, count2,
and total count data points to add them to the Web page.

If the inl, in2, and outl data points under the Net/LON/ Math Controller (Internal)/Math Function
functional block no longer appear in the Web page, click each of these data points to add them
back to the Web page.

13. Observe that the Math Function/outl data point has the same value as the VirtFB/total count
data point. The Web connection keeps these two data points synchronized.

. .
View - Data Points
Show Graph
Name Format Value Unit Priority Status
0 Net/LON/Math Device/Math Function/inl SNVT_count 2 E] E] units 255 ONLINE
1 Net/LON/Math Device/Math Function/in2 SNVT_count 3 E] E] units 255 ONLINE
2 Net/LON/Math Device/Math Function/outl SNVT_count 5 E] E] units 255 ONLINE
3 | Net/LON/ILON App/VirtFb/countl SNVT_count 0 E] E] units 255 NUL
4 Net/LON/ILON App/VirtFb/count2 SNVT_count 0 E] E] units 255 NUL
5 Net/LON/iLON App/VirtFb/total count SNVT_count 5 E] E] units 255 ONLINE

14. Enter values for both the VirtFB/countl and VirtFB/count2 points. Observe the following:

e The Math Function/inl and Math Function/in2 data points in the FPM are updated to the
same values as the dynamic data points on the SmartServer to which they are connected. The
Web connections keep these sets of data points synchronized.

e The Math Function/outl FPM output data point is updated to reflect the sum of the inl and
in2 FPM input points.

e The VirtFB/total count data point on the SmartServer is updated to match the new sum
stored in the Math Function/outl FPM data point.

s s

View - Data Points
Show Graph

Name Format Value Unit Priority Status

0 Net/LON/Math Device/Math Function/inl SNVT_count 3 E] E] units 255 ONLINE

1 Net/LON/Math Device/Math Function/in2 SNVT_count 4 E] E] units 255 ONLINE

2 | Net/LON/Math Device/Math Function/outl SNVT_count 7 E] E] units 255 ONLINE

3 | Net/LON/ILON App/VirtFb/countl SNVT_count 3 E] E] units 255 ONLINE

4 Net/LON/iLON App/VirtFb/count2 SNVT_count 4 E] E] units 255 ONLINE

5 Net/LON/iILON App/VirtFb/total count SNVT_count 7 B E] units 255 ONLINE

For more information on using LONWORKS connections and Web connections to connect the data
points declared in an FPM device, see Chapter 6, Deploying Freely Programmable Modules on a
SmartServer. For more information on using the Web Binding application, including how to validate,
delete, and add attachments to bindings, see Chapter 4 of the i.LON SmartServer User’s Guide.

i.LON SmartServer Freely Programmable Module User’'s Guide 19

20

Introduction

2

Installing i.LON SmartServer
Programming Tools

This chapter describes how to install the i.LON SmartServer Programming Tools,
upgrade the trial version of the i.LON SmartServer Programming Tool to the full version,
update the i.LON SmartServer Programming Tool, and uninstall the i.LON SmartServer
Programming Tools.

i.LON SmartServer Freely Programmable Module User’'s Guide 21

Installation and Upgrading Overview

The i.LON SmartServer DVD includes a trial version of the i.LON SmartServer Programming Tools,
which you can use to write FPM applications and drivers. You cannot use the trial version, however, to
compile and deploy the FPMs. You can write and compile FPMs, and then deploy them on your
SmartServer using the full version of the i.LON SmartServer Programming Tools. The full version of
the i.LON SmartServer Programming Tools is included on the i.LON SmartServer Programming Tools
DVD, which you can order from your Echelon sales representative.

Installing the trial or full version of the i.LON SmartServer Programming Tools adds the following
programs to your computer:

e i.LON SmartServer Programming Tool. A pre-configured Eclipse Development Kit that includes
FPM template files, the FPM library, a tool for creating the C structures of user-defined UNVTs,
a C++ compiler, and a CYGWIN environment. You must have the full version of the i. LON
SmartServer Programming Tools to compile and upload FPMs to your SmartServer with the
i.LON SmartServer Programming Tool.

e i.LON SmartServer LonWorks Interface Developer tool. A command line interface that converts
a model file (.nc extension) to a device interface (XIF) file. You must create a XIF for your FPM
in order to deploy it on your SmartServer. See Chapter 4 for more information on creating XIFs
with this tool.

e i.LON License Generator. A tool for creating licenses that help protect your FPM application
from piracy or unauthorized use. The i.LON License Generator includes the following three
components:

o The main executable (iLONLicenseGen.exe) that provides a user interface for entering the
values used to generate an FPM license.

o A sample license generator configuration file (an XML file named
iLONL.icenseGenValuesSample.xml) that demonstrates the structure of the i.LON License
Generator user interface and provides sample pre-defined values.

o A sample security DLL file (LicenseSecurityHMACMDOS.dII) that takes the values entered
in the i.LON License Generator user interface and creates an FPM license.

See Chapter 7 for more information on creating FPM application licenses.

You can install the full version of the i.LON SmartServer Programming Tools on a computer on which
the trial version has not been installed, or you can upgrade a trial version of the i. LON SmartServer
Programming Tools to the full version. The following sections describe how to install the i. LON
SmartServer Programming Tool for both scenarios. You can also install newer versions of the i. LON
SmartServer Programming Tools as they become available to update your i. LON SmartServer
Programming Tool.

Note: For instructions on installing the trial version of the i.LON SmartServer Programming Tools,
see the i.LON SmartServer User’s Guide.

Installing i.LON SmartServer Programming Tools

22

To install the full version of the i. LON SmartServer Programming Tools on a computer on which the
trial version is not installed, follow these steps:

1. Insert the i.LON SmartServer Programming Tools DVD into your DVD-ROM drive. If your
computer does not have a DVD-ROM, insert the i.LON SmartServer Programming Tools DVD on
a network-accessible computer that has a DVD-ROM and copy the files on the DVD to a shared
network drive. You can then copy the LonWorks\iLON\Development folder from the shared
drive to your computer and install the i. LON SmartServer Programming Tools.

Installing i.LON SmartServer Programming Tools

If the i.LON SmartServer setup application does not launch immediately, click Start on the
taskbar and then and click Run. Browse to the setup.exe file on the root directory of the i.LON

SmartServer DVD and click Open. The i.LON SmartServer main menu opens.

I Echelon i.LON SmartServer SR1 CEx

< ECHELON

i.LON SmartServer service Release 1

| —

Install Products

View ReadMe

Browse DVD Contents

Resources

Contact Us

Click Install Products. The Install Products dialog opens.

B Echelon i.LON SmartServer SR1 L=

Install Products = ECHELON'

Install the Echelon i.LON SmartServer
Enterprise Services SR1. This will
install an application server which runs

Web-based applications. Echelon i.LON SmarntServer Programming Toels SR1 .

Echelon i.LON SmartServer SR1 Software .

Echelon i.LON SmartServer Enterprise Services SR1 .

Adobe Contribute CS3 Trial Edition .
Echelon i.LON Vision SmartServer SR1 .
Echelen NedeBuilder Resource Editor .
Echelon LonMaker 3.1 SP 3 Update 2 .

Click here for more information

Microsoft Internet Explorer 7 .

Adobe Reader 8.1 .
- Adobe SVG Viewer 3.03 .

Click Echelon i.LON Programmability Tools. The Echelon i.LON SmartServer Programming

Tools software installer opens.

i.LON SmartServer Freely Programmable Module User’'s Guide

23

i@ Echelon i.LON FPM Development - InstallShield Wizard

Welcome to the InstallShield Wizard for

l. LON Echelon i.LON FPK Development

The InstallShield(R) Wizard will install Echelon i.LON FPM
Developrment on wour compuater, To continue, click Mext,

WARMING: This program is protected by copyright law and
international treaties,

[oMext> | [Cancel]

5. Read the information on the Welcome window and click Next. The License Agreement window
appears.

i& Echelon i.LON FPM Development - InstallShield Wizand

License Agreement o . LO N.
Please read the Following license agreement carefully, I .

i.LONE SmantServer Software License Agreement

HOTICE

Thisz iz a legal agreement between you and Echelan Carporation (“Echelan™).

Yol MUST READ AMD AGREE T2 THE TERMS OF THIS SOFTWARE LICEMSE
AGREEMEMT BEFORE AMY SOFTWARE CAM BE DOoWMLOADED ©F IMSTALLED CR
USED, BY CLICKIMG OM THE "ACCEPT” BUTTOMN ©F THIS SOFTWARE LICERNSE
AGREEMENT, OR DOWHLOADIMG SCOFTWARE, OR IMSTALLIMG SOFTWARE, OR
USIMG SOFTWARE, O ARE ASREEIMG T2 BE BOUMD BY THE TERME AMD
COMDITIONS OF THIS SOFTWARE LICEMSE AGREEMEMT, IF »OU DO NOT

AOSREE WITH THE TERMS AMD COMODITIONS OF THIS SOFTWARE LICEMSE -

AZDCCRACKIT TUCH /]l CLII I M EWTT TUTS M= abif b T Dnabdhll Sy oD

(33T accept the kerms in the license agreement

{1 do nat accept the kerms in the license agresment

[< Back “ Mext =] [Cancel]

6. Read the license agreement. If you agree with the terms, click Accept the Terms and then click
Next. The Customer Information window appears.

Installing i.LON SmartServer Programming Tools

i@ Echelon i.LON FPM Development - InstallShield Wizard

Customer Information o " L O N.
Please enter vour information, I .

User Marme:

|i.LON SmartServer User

Qrganization:

|echelon|

Install this application For:

(%) aryone who uses this computer (all users)
) only For me {i,LOM SmarkServer User)

[< Back]I et =] [Cancel]

7. Enter your name and company name in the appropriate fields. The name and company may be
entered automatically based on the user currently logged on and whether other Echelon products
are installed on your computer. Click Next. The Destination Folder window opens.

iw Echelon i.LON FPM Development - InstallShield Wizard §|

Destination Folder q . LO N.
Click Mext ko install ko this Falder, ar click Change to install to & different dert .

G Install Echelon i.LOMN FPM Development bo:

C:hLondorkstiLon\Development),

[< Back][Mexk =] [Cancel]

8. The full version of the i.LON SmartServer Programming Tools is installed in the
C:\LonWorks\iLON\Development folder by default. You can click Change to select a different
destination folder. Click Next. The Setup Type window appears.

i.LON SmartServer Freely Programmable Module User’'s Guide 25

26

i Echelon i.LON FPM Development - InstallShield Wizard

Setup Type

(%) Complete

®; ‘
Choose the setup type that best suits your needs, I - LO N

Please select a setup bype.

All program Features will be installed. (Requires the most disk
space.)

Choose which program Features vou want installed and where they
will be installed, Recommended For adwvanced users,

[< Back][et =] [Cancel]

9. Select the type of installation to be performed. It is recommended that you select Complete.
Click Next. The Ready to Install window appears.

i Echelon i.LON FPM Development - InstaliShield Wizard [X]
Ready to Install the Program o . .
The wizard is ready to begin installation, I . LO N

Click Install ko begin the installation,

IF wou wank to review or change any of vour installation settings, click Back, Click Cancel to
exit the wizard,

[< Back “ Install] [Cancel]

10. Click Install to begin the installation. After the i.LON SmartServer Programming Tools have
been installed, a window appears stating that the installation has been completed successfully.

Installing i.LON SmartServer Programming Tools

i& Echelon i.LON FPM Development ed - InstallShield Wizard

i.LON

InstallShield Wizard Completed

The Installshield Wizard has successfully installed Echelon
i.LOM FPM Developrient e, Click Finish to exit the wizard,

Show the readme Fils

11. Click Finish. The i.LON SmartServer Freely Programmable Modules ReadMe file appears. When
you finish reading the ReadMe file, close the window.

Upgrading a Trial Version of i.LON SmartServer Programming
Tools

You can upgrade a trial version of the i.LON SmartServer Programming Tools to the full version by
installing the full version over the trial version. To do this, follow these steps:

1. Follow steps 1-4 in the previous section, Installing Echelon i.LON SmartServer Programming
Tools. The i.LON SmartServer software installer opens.

i@ Echelon i.LON FPM Development - InstallShield Wizard =13

= Welcome to the InstallShield Wizard for
l LON Echelon i.LON FP¥ Development

Echelon i.LOM FPM Development Setup is preparing the
Instalshield Wizard which will guide vou through the program
setup process, Please wait,

Corputing space requirerments

Cancel

2. Click Next. The installation of the i.LON SmartServer Programming Tool begins.

i.LON SmartServer Freely Programmable Module User’'s Guide 27

i Echelon i.LON FPM Development - InstallShield Wizard =3

Installing Echelon i.LON FPM Development o . LO N.
The program Features you selected are being installed. l .

Please wait while the InstallShield Wizard installs Echelon i, LON FPI
Developrent. This may take several minutes,

Skatus:

Cancel

3. After the full version of the i.LON SmartServer Programming Tool has been installed, a window
appears stating that the installation has been completed successfully

i& Echelon i.LON FPM Development - InstallShield Wizand

= Installshield Wizard Completed
i.LON

The InstallShield Wizard has successfully installed Echelon
i.LioM FPM Development, Click Finish ko exit the wizard,

4. Click Finish.

Updating the i.LON SmartServer Programming Tool

You can update your i.LON SmartServer Programming Tool by installing newer versions of the i. LON
SmartServer Programming Tools as they become available. To update your i. LON SmartServer
Programming Tool, you do the following:

1. Browse to the LonWorks\iLON\Development\eclipse\workspace.fpm folder on your computer.
This folder contains your FPM projects and code. This folder is required if you later re-install the

28 Installing i.LON SmartServer Programming Tools

i.LON SmartServer Programming Tool and need to import and modify your existing FPM projects
or port code over to new FPM projects. See the next section, Importing Existing FPM Projects,
for more information on how to import existing FPM projects to an updated version of the i. LON
SmartServer Programming Tool.

2. Copy all your FPM projects and save them to the local drive of your computer, a USB drive, a
floppy disk, another removable media, or a shared network drive with read/write permissions.

3. Delete the LonWorks\iLON\Development folder. This ensures that you can compile the FPMs
you create with the i. LON SmartServer Programming Tool upgrade.

4. Uninstall the current version of the i. LON SmartServer Programming Tools.

5. Install the newer version of the i.LON SmartServer Programming Tools following the steps
described in Installing i.LON SmartServer Programming Tools earlier in this chapter.

Importing Existing FPM Projects

After you update your i.LON SmartServer Programming Tool, you can import your existing FPM
projects into the updated version of the i. LON SmartServer Programming Tool. To do this, follow
these steps:

1. Start the i.LON SmartServer Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer Programming Tools, and then click i.LON SmartServer
Programming Tools. The i.LON SmartServer Programming Tool opens.

2. Click File and then click Import. The Import dialog opens with the Select window.

Select
N

Choose impart source. E -4 5

Select an import source:;

type Filker text

(B3 5ereral
= CICH+
(= Cvs
(== Plug-in Development
= Team

@ Cancel

3. Expand the General folder, click Existing Projects into Workspace, and then click Next.

i.LON SmartServer Freely Programmable Module User’'s Guide 29

Select
E\J]
Create new projects from an archive file or directary.

Select an import source;

| type Filker text |

[=}-[= General
[archive File
99, Breakpoints
ﬁ xisting Projects into
[:L File System
EL Preferences

= CfC++

= s

(== Plug-in Development

(= Team

The Import Projects window opens.

& Import rg|
Import Projects
Select a directory bo search for existing Eclipse projects. / j
<
(%) Select rook direckory: | | | [Browse. ..]
() Select archive file: | | Browse, ..
Projects:

Select Al
Deselect Al

DCopy projects into warkspace

Click Browse. The Browse for Folder dialog opens. Browse to the location of the backup copy
of the FPM project to be imported and then click OK.

Installing i.LON SmartServer Programming Tools

Browse For, Folder @

Select root directory of the projects ko import

=1+C5) FPM Projects Backup
E 800001 0000000000031, UFPTHYACController
&'} 500001 0000000000[3], LFPTMath
{C2) FPM User's Guide_rev10_html_files
{5 iLon100 4,00 French
{3 Math
{2 Preliminary Draft Reviews

P — o o ea

|>

| £

3

%

Foldar: |EDDDD10000000000[3].UFPTMath |
= ==

6. The selected FPM projects is listed in the Import Projects dialog. Select the Copy Projects into
Workspace check box.

& Import b_<|

Import Projects
Select a directory to search For existing Eclipse projects. / J
-

(%) 5elect rook directory: | CiDocurents and Settingstjduvaliy Docume | [Browse. ..]

() select archive File: | | Browse, .
Projects:
2000010000000000[3].UFPTMath Select Al

Deselect Al

[Vl Copy projects into workspace

@ Mext = l Finish H Cancel]

7. Click Finish. The selected FPM project appears in the C/C++ Projects View.

= =9
@ | @ & O

= =% 5000010000000000[3] UFPTMath:
g Includes
== Release
[K UFPTMath.h
[UFPTMath_Ukils,cpp
[£] UFPTMath.cpp

i.LON SmartServer Freely Programmable Module User’'s Guide 31

Uninstalling i.LON SmartServer Programming Tools

If you need to uninstall the i. LON SmartServer Programming Tools, you should back up the
LonWorks\iLON\Development\eclipse\workspace.fpm folder on your computer. This folder contains
your FPM projects and code. This folder is required if you later re-install the i. LON SmartServer
Programming Tools and need to modify your existing FPM applications or port code over to new FPM
projects.

32 Installing i.LON SmartServer Programming Tools

3

Creating FPM Templates

This chapter describes how to use the NodeBuilder Resource Editor to create
user-defined functional profile templates (UFPTs). It explains how to upload your
company’s updated FPM resource file set to your SmartServer so that you can create
an FPM project and begin writing your FPMs.

i.LON SmartServer Freely Programmable Module User’'s Guide 33

Creating FPM Templates Overview

Before you can begin writing an FPM, you need to create its user-defined functional profile template
(UFPT) using NodeBuilder Resource Editor 3.13. Functional profile templates are LONMARK
specifications that enable you to specify the functionality required for a device. A functional profile
template defines the set of network variables and configuration properties within a functional block
that collectively perform a single device function. A functional profile template is defined in a
resource file with an .fpt extension.

For an FPM specifically, a functional profile template defines the data point types to be declared in an
FPM application or FPM driver.

To create a functional profile template for an FPM, you do the following:

1. Create a UFPT. You can create a new UFPT, or you can create one by copying an existing SFPT
to your resource file set.

2. Add the standard and user-defined network variable types (SNVTs and UNVTs) and configuration
property types (SCPTs and UCPTs) to which the FPM will read and write.

3. Generate the updated FPM resource file set in which the template was created and copy it to the
flash disk of your SmartServer.

For more detailed information on using the NodeBuilder Resource Editor to edit resource files and
create functional profile templates, network variables, and configuration properties, see the
NodeBuilder Resource Editor User’s Guide.

Note: If NodeBuilder Resource Editor is not installed on your computer, you can install NodeBuilder
Resource Editor 3.14 from the i.LON SmartServer DVD or the i.LON SmartServer Programming
Tools DVD. See the i.LON SmartServer User’s Guide for more information on installing the
NodeBuilder Resource Editor.

Creating User-Defined Functional Profile Templates

34

You can create a new UFPT in any scope 3, 4, 5, or 6 resource file set. Do not create or modify a
functional profile in a resource file set that does not have your manufacturer ID or is one that you do
manage. To create a new UFPT, follow these steps:

1. Start the NodeBuilder Resource Editor. To do this, click Start, point to Programs, point to
Echelon NodeBuilder Resources, and then click NodeBuilder Resource Editor. The Echelon
NodeBuilder Resource Editor opens.

=1 Echelon NodeBuilder Resource Editor

File Resource Wiew Help
B = = # 0O
C:ALonworks\Types\UzetEchelon\E chelan

g CiLonWorks)bypestiLdrf . Cat
-0 ChiLomwarksi Types
+ B STAMDARD (Scope 0t Standard)
-0 CiLonworks TypesiUserEchelon
el " ¥Fchelon (Scope 3: Echelon)
+ - Minikit (Scope 4 Examples, 1/0)
+-Egp MBUS_Inteqgrator (Scope i Echelon, Gateways)
+ - Isillon (Scope 4: Examples, Mulb-1jO module)
+ B dc0519 (Scope 41 Echelon, Generic Analog Gukpuk)
+ - DCO131 (Scope 4: Echelon, 0x011F)
+ B BAS_Controller (Scope 41 Echelon, Generic Controller)
+-@p 191 Lighting 2 (Scope 5 0xFFFSL, Lighting, General)
=0 ChiLonworksiModeBuilder | Examplesi Types
+ - NcExample (Scope i Examples, 1JO, General)

Creating FPM Templates

2. Create a <YourCompany> folder under the LonWorks\types\user directory on your computer if
one doesn’t already exist. To do this, follow these steps:

a. Right-click the LonWorks/types/Ldrf.Cat file and then click Add Folder on the shortcut
menu.

i Echelon NodeBuilder Resource Editor

File Resource iew Help

==/ 0 x # 0

C:hLonworkshypeshLdif. Cat

Add Folder. ..

S CLomdorks\ Types
+ i STANDARD (Scape | Mew Resource File Set,,,
=L Cr\Lomdorks\ TypesUse
+-fgp echelon (Scope 3: E
+-Egp Minikit (Scope 4: Ex
+-fgp MBUS_Integrator (3 Catalog Properties...
+-Eg Isillon (Scope 4: Ex,
+-fgp dc0519 (Scope 4: B Search...
¥
¥
¥

Refresh Catalog
Save all...

@ DCO131 (Scope 1€ POPOME.
8 BAS_Conbroller (Scg CPHons...
B 151 Lighting 2 (Scope 5: 0<FFFS1, Lighting, General)

b. Open the User folder, create a new folder named YourCompany, and then click Open twice.

Add Folder HE
Look in: |L’f} User j & =5 EE-
(CS)Echelon

[e==]

Canecel

c. The YourCompany folder appears at the bottom of the resource catalog view.

3. Create a new resource file set for your company. If you plan on integrating your FPM
applications with an LNS application such as the LonMaker tool, you need to create a scope 5
resource file set. To create a new resource file set, follow these steps:

a. Right-click your company’s resource file set and click New Resource File Set on the shortcut

menu.

i.LON SmartServer Freely Programmable Module User’'s Guide

35

36

&4 Echelon NodeBuilder Resource Editor

File Resource Yiew Help
=] EE) O # O

C:ALomworksMypesh JeervourCompang

5 CiiLanworks|bypes|Ldrf. Cat
-0 CrilonWaorks) Types
+ B STANDARD (Scope 0: Standard)
=20 CiileantWorks) TypesiUseriEchelon
+-Ep echelon (Scope 3t Echelon)
B Minikit (Scope 4: Examples, /00
B MBUS_Integrator (Scope 4: Echelon, Gateways)
B Isillon (Scope 4 Examples, Multi-If0 module)
B do0519 (Scope 4: Echelon, Generic Analog Output)
B DCO131 (Scope 4 Echelon, 0x011F)
B BAS_Controller (Scope 4: Echelon, Generic Controller)
B 151 Lighting 2 {Scope 5: 0xFFFS1, nghtlng, General)
|

C:iLonty

5[F - [

Remove Dl

Search...

b. The New Resource File Set dialog opens.

MNew Resource File Set

General] Header]

Scope:

ou are about ba add four
new files to the catalog: Scope 3 - Manufacturer Clas

F'ru:ugram 1D:

R OO0 R . kg

RO000D sk ot Resource file get name:

MMM CCCC TT NN

Ox l_ 0oooa lil_l_ l_ Calculator...

RO0oo0:
R OO000 iz, frnt | AR

RO0000: . U Resource file set location:

|C: SLort'ork ghiypesi U zeryrourCompany

D ata version

b ajor: Firor;

I T

[

ak. | Cancel

If you plan on integrating your FPM applications with an LNS application such as the
LonMaker tool, you should select 5 in the Scope box (this sets the scope to device class,

manufacturer, usage, and channel type).

In the manufacturer (MMMMM) field of the Program ID box, enter your 5-digit

manufacturer ID in hexadecimal format.

Creating FPM Templates

Note: If your company does not have a manufacturer ID, you can get a temporary

manufacturer ID from LonMark at www.lonmark.org/mid. In addition, if your company has
many FPM developers, it is recommended that you request temporary manufacturer IDs for
them. After you obtain your temporary manufacturer ID, you can enter it in the MMMMM

field of the Program ID box.
e. In the format (F) field of the Program ID box, enter 9 (this sets the Standard Development

Program ID flag).

f. Inthe channel (TT) field of the Program ID box, enter 04 if you have an FT-10 model of the
SmartServer or enter 10 if you have a PL-20 model of the SmartServer.

g. Inthe Resource File Set Name box, enter “FPM Development”, “FPM Examples”, or

something comparable.

New Resource File Set E| E|

General] Header]

“Y'ou are about to add four
new files bo the catalog:

FPM Development.tup
FPr Development. fpt
FPM Developrient.frit

FPM Development.enu

Scope:

|Sc:c-|:-e 5 - Manufacturer, Device Clazs, Uzage and Channel Typej

Frogram 10
bbAAbA CCCC UL TT MM

F
o] 3 [FFD3E [0000 [oo [o04 [00 Calculator.

Resource file set name:
|FPM Dievelopment

Fesource file set location:

|E: SLonwiorkshypestl zery Y ourCompary
Data verzion
b ajor: Fimor;
1 a

Ok | Cancel |

h. Click OK.

4. Your company’s FPM resource file set is created and added to the resource catalog under the

<Your Company> folder in the LonWorks\types\user directory.

i.LON SmartServer Freely Programmable Module User’'s Guide

37

http://www.lonmark.org/mid

&1 Echelon NodeBuilder Resource Editor,

File Resource Wiew Help
B == # B
C:ALontwork shtypestUserYourCarmpanytFPM Development
o CiLonworksitypesiLdrf.Cat
—-23 CiLonwarks Types
+ B STANDARD (Scope 00 Standard)
-2 Ci\LontWarks) TypesiUser\Echelon
+ @ echelon (Scope 3: Echelon)
B Minikit (Scope 4: Examples, [fO)
i MBUS_Integrator (Scope 4 Echelon, Gateways)
f8p Isillon (Scope 4 Examples, Mulki-If0 module)
i dc0S19 (Scope 4 Echelon, Generic Analog Oukput)
e DCO131 (Scope 4 Echelon, 0x011F)
89 BAS_Controller (Scope 4: Echelon, Generic Controller)
9 151 Lighting 2 (Scope 5 0xFFFS1, Lighting, General)
=20 Ci\LontWarks\typesiUseriVourCompany

O O

v i IManagement)
+1-_1 Metwork Yariable Types
+ D Configuration Property Types
+1-{_1 Functional Profile Templates
D Enumerations
+-_1 Language Files
+ D Formats

Create a UFPT. You can create a new UFPT, or you can create one by copying an existing SFPT
to your resource file set. To create a UFPT from an SFPT, skip to step 7. To create a new UPFT,
follow these steps:

a. Expand the folder containing your company’s FPM resource file set, right-click the
Functional Profile Template folder, and then click New FPT on the shortcut menu.

&1 Echelon NodeBuilder, Resource Editor

Fle Resource Wiew Help

= 0= @ # 0
C:hLonworks'typesiUsertroulCompany FPM Development fpt
g i LonWWorks|bypesiLdrf. Cat
-1 Crilonworks\ Types

+- @ STAMDARD (Scope 0: Standard)
=[] C:\Lonworks\ Types\User\Echelon

+- i echelon (Scope 3: Echelon)

+-fp Miniit {(Scope 4: Examples, I/O)

+|-fllg MBUS_Integrator (Scope ¢! Echelon, Gateways)

+ B Isillon (Scope 4t Examples, Mulki-If0 module)

+-fp dc0519 (Scope 4: Echelon, Generic Analog Cukput)

=+ DC0131 (Scope 4: Echelon, Ox011F)

+ B BAS_Controller (Scope 4 Echelon, Generic Controller)

+| @@ 151 Lighting 2 (Srope 5: 0xFFFS1, Lighting, General)
=13 CiiLonworks\typesiser| YourCompany

=@ FPM Development (Scope S: 0xFFO3E, 020000, Nebwork Management)

+-[_] Metwork Variable Types

pes

{23 Enumerations
+-(27 Language Files

Search...
+ D Formats

Repart...

Properties

Note: Do not expand a resource file set that does not have your unique program ID or is one
that you do not manage.

b. A functional profile template node (@) with a default name of UFPT<index> (<key>) is
added to the Functional Profile Templates folder.

c. Enter a meaningful name for the new UFPT. By convention, the functional profile name
should indicate the application set of the profile (for example, “UFPTHVACController”).
The name must start with “UFPT”, and by convention, there is no underscore following
UFPT; the first letter after UFPT is upper case (for SmartServer embedded applications only);
and the name uses mixed case. Functional profile names are limited to 64 characters,
including the “UFPT” prefix, and cannot contain spaces or dollar characters.

Creating FPM Templates

6. To create a UFPT from an SFPT, follow these steps:

a. Expand the STANDARD resource file set under the LonWorks\Types folder, expand the
Functional Profile Templates folder to show all the SFPTs in the folder, right-click a SPFT,
and then click Copy on the shortcut menu.

&1 Echelon NodeBuilder Resource Editor

File Resource Wiew Help
2 = i
CALonworkshTypeshSTANDARD. fpt

.g CiLonWorks\bypestiLdrf . Cat
-0 CiLomwarks) Types
—|-Egp STAMDARD (Scope O: Standard)

+-[27] Mekwork Yariable Types
+ D Configuration Property Types
=1-{_] Functional Profile Templates

& SFPTnodeChiect (0)

W SFPToperLoopSensar (1)

% SFPTclosedLoopSensor (2)

% SFPTopenLoopactuatar (30

% SFPTclosedloophctuatar (4)

% SFPTcalendar ()

% SFPTscheduler (7)

% SFPTanalogInpuk (5200

% SFPTanalogQutput (521)

% SFPTlightSensar (10100

% SFPTpressureSensor (10500

X SFPThvacTempSensor (1040)

% SFPTFrostSensor (10423 Open...

% SFPThvacRelativeHumiditySer

¥ SFPTraingensor (1051}

% SFPToccupancySensor (10607

% SFRTcozSensor (1070) Report...

% SFPTairvelocitySensar (1083)

% SFPTuilibyDataloggerRegistey
= CEDTykilibwtlabar (2901%

+

O O o O O e e S e M = e B

b. Right-click the Functional Profile Templates folder in your company’s FPM resource file
set and click Paste on the shortcut menu.

i.LON SmartServer Freely Programmable Module User’'s Guide 39

&4 Echelon NodeBuilder Resource Editor,

File Resource View Help

B8 # O

C:hLonwork s\typesiUser\yourlCompany\FPM Dewvelopment. fpt

g CHiLonworks\typesiLdrf. Cat
-0 C\Lonwarks\Types
- STAMDARD (Scope O: Standard)
+-[_] Metwork Yarisble Types
+ [:l Configuration Property Types
+-{_1 Functional Profile Templates
+ D Enumerations
+-[_1 Langquage Files
+-[_1 Formats
-1 <\Lontorks) TypesiUser|Echelan
+|-@p echelon (Scope 3t Echelon)
+|-Ep Minikit (Scope 4 Examples, 10}
+|- @ MBUS_Integrator (Scope 4: Echelon, Gateways)
+|-E@p Isillon (Scope 4 Examples, Mulki-IfO module)
+| - dc0519 (Scope 4: Echelon, Generic Analog Cukput)
+-fp DC0131 {Scope 4: Echelon, 0x011F)
+|-Ep BAS_Controller (Scope ¢ Echelon, Genetic Contraller)
+|-@ ISI Lighting 2 {Scope 5: 0xFFFS1, Lighting, General)
-1 SrLontorksitypesiUser YourCompany
-|-E@p FPM Development (Scope 5t 0xFFD3E, 00000, MNetwork Management)
+-{1 Metwaork Yariable Types
+ D Configuration Property Types

+-% UFPTMath (20002} Mew FRT...
D Enumerations Search...
+- (1 Language Files Repart

+-[_1 Formats

Properties

You can then add, delete, and edit the network variable and configuration property members

in the SFPT to fit your FPM application or driver.

&3 Echelon NodeBuilder Resource Editor,

File Resource Wiew Help
B = W X # 0
C:hLanwarks\typeshUzersyourCompanysFPM Development. fpt
g CiilonvorksibypesiLdrf. Cat
=7 Cilonwaorksi Types
+-fp STANDARD (Scops ¢ Standard)
=7 Cilonworks) TypesiUseriEchelon
+- @ echelon (Scope 3: Echelon)
+-@p MiniKit {Scope 4: Examples, 1O}
+- @ MBUS_Integrator (Scope 4 Echelon, Gateways)
+-@ Isillon {Scope 4: Examples, Mulki-If0 module)
+|-@y dc0519 (Scope 4: Echelon, Generic Analog Qutput)
+-fp DCO131 {Scope 4: Echelon, 0x011F)
+|-@p BAS_Controller (Scope 4: Echelon, Generic Controller)
+-@p 131 Lighting Z {Scope 5: 0xFFFS1, Lighting, General)
=1 CilonworksibypesiUser| YourCompansy
—|-fy FPM Development {Scope 5: 0xFFD3E, 0x0000, Metwork Management)
+1- (7] Metwork Vatiable Types
+ D Configuration Property Types
—1-{Z1] Functional Profile Templates
@ LUFPThvacTempSensor (1041)
—1-{_] Mandatory Nys
E{j nwoHYACTemp (Principal)
-1 Optional Mys
nvoFixPtTemp
g nwoFloatTemp
=1 Mandatary CPs
nciMaxsendTime
neiMinDelta
nciMinsendTime
=-{{3 Optional CPs

@ neiTmpOffset
N L

Adding Network Variable and Configuration Property Types

40

You can add network variable and configuration property types to your UFPT. You can add types that
are defined in the standard scope 0 resource file set and types defined in your company’s FPM

Creating FPM Templates

resource file set (the resource file set that has your manufacturer ID). To add network variable and
configuration property types to your UFPT, follow these steps:

1. Double-click the new UFPT, or right-click it and click Open on the shortcut menu. The Modify
Functional Profile dialog opens.

¥ Modify Functional Profile UFPTHVACController,

File Edit Help
i | =3 UFPTHYACController =
[0 Mandatary Nyvs
+-(Z11 Configuration Properties {21 Optional Ny's Name UFPTHYACController
+-@p CALorw/orksMypesilsersy'ourl (2 Mandatom CPs
{21 Optional CPs FPT key: 20000

FPT index: 1
Principal MY Mo Principal MY
Mandatory NV count: 0
Optional NV count: 0
Mandatory CF count; 0
Optional CF count: 0
String infarmation
Sthing: Scope: 3 Index none
| Hew Link..
Comment; Scope: 3 Index none
| MNew Link..
[Make this item obsolete

< »

Scope: 3 Index: 1 Resaurce file: FPM Development Active set: FPM Development

2. Expand the LonWorks\types\STANDARD resource file set (or expand your company’s FPM
resource file set to add user-defined data types), expand the Network Variables or Configuration
Properties folder in the Resource (left) pane.

3. Click and drag the target data type to the Mandatory NVs or Mandatory CPs folder in the
Profile (center) pane if the device interface used by the FPM must implement the target data type,
or drag the target data type to the Optional NVs or Optional CPs folder if the FPM device
interface has the option of implementing or not implementing the target data type.

i.LON SmartServer Freely Programmable Module User’'s Guide 41

42

Modify Functional Profile UFPTHVYACCo,
File Edit

H =

Help

SHWT _pwi_fact ~
SKYT pwn_fact f
ST _rac_chl
SNYT_rac_req
SNWT _reg_val
SHYT _reg_val_ts
SHWT _res

ST _res_f
SNYT_res_kilo
ST _ipm
SHYT_sbind_state
SNWT _scene
SMNWT_scene_cfg
SHYT_sched_val
SNWT _setting
SHYT _sma_obscur
ST _sound_db
ST _sound_db_f
SHYT_speed
SNWT_speed_f
SHYT _speed_mil
SNWT _state
SMWT _state_E4
SHYT_st_asc
SNYT _str_int

= = UFPTHWACController
s T _switch

{23 Optional N¥s

3 Mandatory CPs

{Z1 Optional CPs

g
SHWT _telcom
ST _temp
SNYT_temp_diff_p
SNYT _temp_t
SHWT _temp_p
SNWT _temp_ror

I, S ——,

< |

Scope: 3 Index: 1 Resource file: FPM Development

MName:

UFPTHYACController
20000

FPT kes:

FPT index 1

Principal Nv: Mo Principal Ny
Mandatory NV count:

Optional NV count: 1]

=)

Mandatary CF count,

=)

Optional CF count

String infarmation
String

| Mew Link.

Index: none

Scope: 3 Index none

Comment Scope: 3

| MNew Link,

™ Make this item obsolete

Cancel

Active set: FPM Development

4. The selected data type appears below the folder to which it was added in the Profile (center) pane,
and the selected data type can be edited in the Properties (right) pane.

5.

Modify Functional Profile UFPTHVACCo
File Edit Help

H B=2oX

=10 UFPTHYACControllsr
=3 Mandator Ny's
it ACM ode
reviSetPoint
riTemp

#- @ ChLonworkshTypes\S TANDAR
i ChLonwokshtypesiUserVourl

rvoFumace_0nOff
{Z1 Optional Ny's

{21 Mandatory CPs

{21 Optional CPs

Scope: 5 Index: 5 Resource file: FPH Development

nvadirCanditioner_OnO|

Sevieepe [T =] T

String infarmation

Shing: Scope: 0 Index 91
Temperature T

New ||Link...
Comment; Scope: B Index none

| New Link.
Referenced type range override value
| Minimum -

Foimatted value:

-
Hame: [T emp Member: [#1 =]
Fieference: | ShT_temp_f =] Boope [0 4]
NV settings
I Principal K
& Input
™ Qutput

Cancel

Active set: FPM Development®

If you added a network variable to the functional profile template, enter the following information
in the Properties (right) pane and then skip to step 7:

Creating FPM Templates

Name Enter the name of the network variable within the functional profile
template. The name of the network variable may contain letters, digits, and
underscore characters, but it cannot start with a digit.

Optionally, you can insert “nvi” and “nvo” in front of input and output
network variable names, respectively, to simplify the identification of the
input and output network variables in the functional profile template. For
example, you can name a SNVT_temp input data point “nviSetPoint”, or
you can name a SNVT_switch output data point “nvoLamp OnOff”.

If you do not insert an “nvi” or “nvo” prefix, the name of the data point
should start with a capital letter and use mixed case. For example, you can
name a SNVT_temp input data point “SetPoint”, or you can name a
SNVT _switch output data point “Lamp_OnOff.

NV Settings
Principal NV Designates this network variable as the principal network variable of the
functional profile template. Each functional profile template may have one
principal network variable. The principal network variable is used to
determine the type of configuration properties with inherited types that apply
to the functional profile template.
Input/Output Specify whether the network variable is an Input or Output network

variable

6. Ifyou added a configuration property to the functional profile template, enter the following
information in the Properties (right) pane:

Name Enter the name of the configuration property within the functional profile
template. The name of the configuration property may contain letters, digits,
and underscore characters, but it cannot start with a digit. Optionally, you
can insert “nci” in front of configuration property names to simplify the
identification of the configuration properties within the functional profile
template.

CP Settings

Array Specify whether the configuration property within the functional profile
Implementation template can be implemented as an array. You have the following three
choices:

e Prevent. Functional blocks created using this functional profile
template cannot implement this configuration property as an array. If
you select this option, the Min Array Size and Max Array Size
properties are unavailable. This is the default, and it applies to all
functional profiles created prior to NodeBuilder 3.1.

e Permit. Functional blocks created using this functional profile template
can implement this configuration property as an array at the discretion
of the implementer. If you select this option, set the Max Array Size to
limit the maximum size of the array. The Min Array Size property is
unavailable.

e Require. Functional blocks created using this functional profile
template must implement this configuration property as an array. If you
select this option, set the Max Array Size and Min Array Size
properties to limit the maximum and minimum size of the array.

CP Settings Select the following configuration property flags for the scenarios in which
the configuration property can be changed. See the LONMARK

i.LON SmartServer Freely Programmable Module User’'s Guide 43

44

Applies To

Application Layer Interoperability Guidelines for more information about
configuration property restriction flags.

e const_flag. The value of the configuration property cannot be changed.

Note: When you deploy the FPM on the SmartServer, the configuration
property is automatically set to be persistent. This means that the
configuration property’s default value is updated to match the current
value stored in the configuration property, and that configuration
property’s current value persists through reboots.

e device_spec_flg. The value of the configuration property is always
read from the device and can be modified independent of the LNS
database.

e mfg_flg. The configuration property value can only be changed when
the device is being licensed.

e 0bj_disabl_flg. The device must be disabled for the configuration
property value to be changed.

o offline_flg. The device must be offline for the configuration property
value to be changed.

e reset_flg. The device is reset after the configuration property value is
changed.

When a functional block implements a profile, each of the implemented
member configuration properties must specify at least those restriction flags
that are set in the profile. Restriction flags that are not set in the profile may
be set by the implementing property, unless this would cause an ambiguous
restriction flag set.

Specify the scope of the configuration property. The configuration property
can apply to the entire Functional Block or a network variable within the
functional profile template.

If the configuration property applies to the functional block, and the
functional block implements an inheriting type, the property will derive its
type from the principal network variable. A principal network variable must
be defined in this case.

If a configuration property is to apply to a specific network variable, select
the network variable from the Applies To list.

Creating FPM Templates

¥ Modify Functional Profile UFPTHVACController,

File Edit Help
=]
+ -l ortéorks\TypeshSTANDAF | =] UFPTHWACCantroller r
- iy = [Mandatoy Wi
-1 MNetwork Yariables rviHVACKode Marme: ‘nciHysteresis M ember ‘#1 ::I
=1 Configuration Properties nviSetPoint
@ UCPTHysteresis nviTemp Ref - g
rrvadirConditioner_On0l FIRtenee: ‘UCPTH}'SIEIBSIS ﬂ Cope: ‘5 ﬂ
rvoFurnace_OnOff CP seftings
(22 Optional s Auray implementation:
Py it
= [Mandatory CPs rEven ad
nciHysteresis = =|
rciHeartbeat = =
neilffline O const_flg [value is never changed) |
neiThioltie [device_specific_flg [Ahwaps read value from the device]
{23 Optional CPs
O mita_flg (Madify only during marufacture)
[obi_disabl_fig (Disable functional block befare madifying) ™
Applies to: |Functional block j
String information
Shing; Scope: 5§ Index: none
| Mew Link
Commet: Scope: 5 Index none
| MNew Link..
Type range overide and default value
o2
| Default hd
Formatted valus: 32
< LN ES >

Cancel

Scope! 5 Index: 5 Resource file: FPM Development Active set: FPM Development™

7. Repeat steps 3—6 for each data type to be added to the functional profile template.
8. Click OK.

Generating and Copying the Updated FPM resource file set

Once you create a UFPT and add all the required network variable and configuration property
members to it, you can generate the updated FPM resource file set in which the UFPT was created.
After you generate the updated FPM resource file set , you can copy it to the flash disk of your
SmartServer.

To generate the updated FPM resource file set and copy it to your SmartServer, follow these steps:

1. Right-click your company’s FPM resource file set, and then click Generate Resources Set on the

shortcut menu.

i.LON SmartServer Freely Programmable Module User’'s Guide

45

46

2.

&4 Echelon NodeBuilder Resource Editor

Ele Resource Yiew Help
B = H x| [
CALonworkshtypesiUserourCompanyyFPM Development
g CiLonWWorks|bypesiLdrf, Cat
=23 C\Lonworks Types

+ B STANDARD (Scope 0: Standard)
—-[C3 C\Lonworks| TypesiUser|Echelan
+-f echelon {Scope 3: Echelon)
+-Ep Minikit (Scope 4! Examples, If0)
+-fp MBUS_Integrator (Scope 4: Echelon, Gateways)
+ @ Isillon {Scope 4: Examples, Multi-IfCO module)
+-fp dr0519 (Scope 4 Echelon, Generic Analog Output)
+-f DCO131 {Scope 4: Echelon, 0x011F)
+-@p BAS_Controller (Scope 4 Echelon, Generic Controller)
+-@p I5I Lighting 2 (Scope 5 0xFFFS1, Lighting, General)
= [0 C\LonworksibypesiUser\YourCompany
e 0xFFD3E

Open...

+ D Configuration Property Types Search...
=1-{Z3 Functional Profile Templates Report...
+ LFPTMath (20002
+ UFPTHYACController (20004) Copy

[:I Enumerations
+-{_7] Language Files
+ D Formats

Set Version,

Propetties

The Generate Resources Set dialog opens.

" Generate Resource Files

The following filez have been opened in edit mode:

FPM Development.enu

FFh Development. fpt M

Generate files?

Wes Mo | Cancel |

™ Dan't show this message next time

Click Yes to generate the updated FPM resource file set.

Use FTP to access the root/lonworks/types/user directory on the flash disk of your SmartServer.
Create a User/<YourCompany> folder if it does not already exist in the root/lonworks/types
directory.

Browse to the LonWorks\Types\User\<Y ourCompany> folder on your computer, and then copy
your company’s .ENU, .fmt, .fpt, .is, and .typ files to the
root/lonworks/types/user/<YourCompany> directory on the SmartServer.

Repeat step 5 for each SmartServer on which the FPM is to be used. Your company’s resource
files must be installed on a SmartServer in order to create a functional block representing the FPM
application on the SmartServer.

Reboot your SmartServer using the SmartServer Web pages or the SmartServer console
application.

e To reboot your SmartServer using the SmartServer Web pages, right-click the local
SmartServer, point to Setup, and then click Reboot on the shortcut menu. The Setup — Reboot
dialog opens. Click Reboot to start the reboot.

Creating FPM Templates

e To reboot your SmartServer using the SmartServer console application, enter the reboot
command. For more information on using the SmartServer console application, see the i.LON
SmartServer User’s Guide.

8. If you are using a static device interface (XIF) for your FPM, proceed to Chapter 4 to create a
model file for your FPM, convert the model file to a XIF file, and upload the XIF file to your
SmartServer. If you are using a dynamic XIF for your FPM, proceed to Chapter 5 to create a new
FPM project from the UFPT and begin writing the FPM.

i.LON SmartServer Freely Programmable Module User’'s Guide 47

48

Creating FPM Templates

4

Creating FPM Device Interface (XIF)
Files

This chapter describes how to write a model file that declares the network variables
and configuration properties in your FPM and a functional block implementing an
instance of the UFPT used by your FPM. It explains how to use the i.LON
SmartServer LONWORKS Interface Developer tool to convert your model file to a
device interface (XIF) file and how to copy the XIF to your SmartServer.

i.LON SmartServer Freely Programmable Module User’'s Guide 49

Creating FPM Device Interface (XIF) Files Overview

In order to deploy an FPM application on the SmartServer, you need to create a device interface (XIF)
file extension). The XIF exposes the logical interface of your FPM application so that network tools
such as the SmartServer and the LonMaker tool can manage it. The XIF specifies the number and
types of functional blocks, and the number, types, and directions of the network variables and
configuration properties in your FPM application. Note that the SmartServer only recognizes the text
file version of the XIF (.xif extension).

To create a device interface (XIF) file for your FPM application, you do the following:

1. Create a model file (.nc extension) with a text or programming editor such as Notepad. In the
model file, you declare all the network variables and configuration properties in the UFPT used by
your FPM application, and you declare a functional block that implements an instance of that
UFPT.

2. Generate a XIF from your model file using the i. LON SmartServer LonWorks Interface Developer
tool. Copy the XIF (.xif extension) to the root/lonWorks/Import/<YourCompany> folder on the
SmartServer flash disk.

Creating a Model File

The model file uses the Neuron C programming language to describe the functional blocks, network
variables, and configuration properties in an FPM application. You do not need to be proficient in
Neuron C to create a model file for an FPM because the model file does not include executable code.
The i.LON SmartServer Programming Tools includes a command line interface called the i. LON
SmartServer LonWorks Interface Developer tool that converts model files to XIFs. Note that the
model file uses Neuron C Version 2.1 declaration syntax.

You can use any of the following methods to create a model file:

e Manually create a model file. A model file is a text file that you can create with any text or
programming editor such as Notepad. This section describes the basic Neuron C statements
required to declare network variables, configuration properties, and functional blocks in your
model file.

e Reuse existing Neuron C code. You can reuse an existing Neuron C application that was
originally written for a Neuron Chip or a Smart Transceiver as a model file. The i.LON
SmartServer LonWorks Interface Developer tool uses only the device interface declarations from a
Neuron C application program, and ignores all other code. You might have to delete some code
from an existing Neuron C application program, or exclude this code using conditional
compilation.

e Automatically generate a model file. You can use the NodeBuilder Code Wizard, which is
included with Release 3 or later of the NodeBuilder Development Tool, to automatically generate
a model file. Using the NodeBuilder Code Wizard, you can define your device interface by
dragging functional profiles and type definitions from a graphical view of your resource catalog to
a graphical view of your device interface, and refine them using a convenient graphical user
interface. When you complete the device interface definition, click the Generate Code and Exit
button to automatically generate your model file. You can then use the main file produced by the
NodeBuilder Code Wizard as your model file. Note that the NodeBuilder Code Wizard is not
included with the i.LON SmartServer Programming Tools, and it must be licensed separately. See
the NodeBuilder User’s Guide for details about using the NodeBuilder Code Wizard.

Declaring Network Variables

A network variable is a data item that a device application expects to get from other devices on a
network (an input network variable) or expects to make available to other devices on a network (an
output network variable).

50 Creating FPM Device Interface (XIF) Files

You must declare all the mandatory network variables in the UFPT you created for your FPM. You
may declare none to all of the optional network variables in the UFPT.

SYNTAX
You can declare a network variable in your model file using the following syntax:
network input || output type identifier;
The network keyword declares a network variable of a specific type with a specific identifier.

The input and output keywords define the direction of the network variable. The specified
direction must match the one defined for the referenced network variable in the UFPT.

The type property corresponds to the standard or user-defined network variable type (SNVT
or UNVT) used by the network variable. The specified data type must match the one defined
for the referenced network variable in the UFPT.

The identifier property is a reference to the network variable in the UFPT. The name
specified in this property is the one that will be used by network tools such as the SmartServer
and the LonMaker tool for the referenced network variable. The maximum length of the
identifier is 16 characters.

EXAMPLES

The follow example demonstrates how to create input and output network variables in your model
file:

network input SNVT_temp_ T nviTemp;
network input SNVT_temp_F nviSetPoint;
network input SNVT_hvac_mode nviHVACMode;

network output SNVT_switch nvoAC_OnOff;
network output SNVT_switch nvoFurnace OnOff;
network output SNVT_str_asc nvoStatus;

By convention, input network variable names have an nvi prefix, and output network variables
have an nvo prefix.

For more information on declaring network variables, see Chapter 3 of the Neuron C Programmer’s
Guide.
Declaring Configuration Properties

A configuration property is a data item that specifies the behavior of the FPM application or driver (its
network variables and functional blocks). Configuration properties are used for configuration data
such as set points, alarm thresholds, or calibration factors. The configuration properties in an FPM can
be set by a network management tool such as the SmartServer or the LonMaker tool.

You must declare all the mandatory configuration properties in the UFPT you created for your FPM.
You may declare none to all of the optional configuration properties in the UFPT.

SYNTAX

The syntax used for configuration property declarations is similar to that used for network variable
declarations except that the direction modifier is always input, and it includes a config_prop or
cp keyword (you can use either keyword) that follows the type declaration.

network input type cp name;
network input type config_prop name;

The network keyword declares a configuration property of a specific type with a specific
identifier.

The input keyword specifies that the configuration property is an input data point.

i.LON SmartServer Freely Programmable Module User’'s Guide 51

52

The type property corresponds to the standard or user-defined network variable type (SCPT
or UCPT) used by the configuration property. The specified data type must match the one
defined for the referenced configuration property in the UFPT.

The config_prop or cp keyword declares the data type as a configuration property.

The identifier property is a reference to the configuration property in the UFPT. The name
specified in this property is the one that will be used by network tools such as the SmartServer
and the LonMaker tool for the referenced configuration property. The maximum length of the
identifier is 16 characters.

EXAMPLES
The follow examples demonstrate how to create configuration properties in your model file:

network input SCPTmaxSendTime nciHeartbeat;
network input SCPTmaxRcvTime nciOffline;

network input SCPTminSendTime nciThrottle;
network input UCPTHysteresis nciHysteresis;

By convention, configuration property names have an nci prefix.

For more information on declaring configuration properties, see Chapter 4 of the Neuron C
Programmer’s Guide.

Declaring Functional Blocks

A functional block is a collection of network variables and configuration properties that are used
together to perform one task. These network variables and configuration properties are called the
functional block members. Each functional block implements an instance of a functional profile.

A functional profile is used to describe common units of functional behavior. Each functional profile
defines mandatory and optional network variables and configuration properties. A functional block
must implement all of the mandatory network variables and configuration properties defined by the
functional profile, and it may implement any or all of the optional network variables and configuration
properties defined by the functional profile.

SYNTAX
You can use the following syntax to declare functional blocks.

fblock FPT-identifier {fblock-member-list} identifier
[external name] [{fb-property-list}];

The fblock keyword declares a functional block for the FPT-identifier and identifier
properties.

The FPT-identifier property specifies the name of the UPFT implemented by the functional
block.

The fblock-member-list property lists each network variable reference declared in the model
file. Every mandatory network variable member in a UFPT must be implemented by network
variable reference in the model file. Each network variable in the model file can implement
only network variable member, and can only be associated with one functional block in the
model file. You can list a network variable reference and implement its corresponding
network variable member in the UFPT using the following syntax:

nv-reference implements nv-member-name

The identifier property is the name the declared functional block. This name is not exposed
to the SmartServer so you can enter any string in this property.

The external_name keyword declares a functional block name that is exposed to the
SmartServer. You can specify the external name keyword and then a descriptive, readable
name for the functional block. If you do not specify a functional block name with

Creating FPM Device Interface (XIF) Files

external_name property, the SmartServer uses the FPT key of the UFPT for the functional
block name. The FPT key is a unique ID (20000 or higher) defined for the UFPT within a
resource file set.

The fb-property-list is used to implement the configuration properties declared in the model
file that apply to the functional block. You can implement one or more functional block
configuration properties using the following syntax:

fb_properties
{cp-reference,cp-reference,cp-reference

}:
For more information on declaring functional blocks, see Chapter 5 of the Neuron C Programmer’s
Guide.

Using Include Directives

If a data point declared in your UFPT has a data type that references a system include file, you need to
insert an include directives at the beginning of your model file that in order for it to access that source
file. System include files are installed by the NodeBuilder Development Tool, and they are stored in

the LonWorks\NeuronC\Include directory on your computer by default. To insert an include directive
in your model file, you can use the bracketed form:

#include <filename.ext> //bracketed form

For example, if you declare a SNVT_temp_f data point in your model file, which has a float data type,
you need to insert the following include directives at the beginning of your model file:

#include <float.h>

Example Model Files

The following examples demonstrate how to create model files that instantiate a single functional
block; multiple functional blocks based on the same UFPT; and multiple functional blocks with unique
UFPTs.

Single Functional Block

The following example demonstrates a model file that declares all the mandatory network variable and
configuration property members in the UFPT, which consists of three input network variables, two
output network variables, and four functional block configuration properties (one of which is a
user-defined type). The example model file then declares a functional block that does the following:
lists network variable member implementations of all the declared input and output network variables,
declares an external functional block name to be used by the SmartServer, and implements the declared
configuration properties.

#include <float.h>

network input SNVT_hvac_mode nviHVACMode;
network input SNVT_temp_f nviSetPoint;
network input SNVT_temp_ T nviTemp;

network output SNVT_switch nvoAC OnOff;
network output SNVT_switch nvoFurnace OnOff;

network input SCPTmaxSendTime cp nciHeartbeat;
network input SCPTmaxRcvTime cp nciOffline;

network input SCPTminSendTime cp nciThrottle;
network input UCPTHysteresis cp nciHysteresis;

fblock UFPTHVACController {
nviHVACMode implements nviHVACMode;

i.LON SmartServer Freely Programmable Module User’'s Guide 53

nviSetPoint implements nviSetPoint;
nviTemp implements nviTemp;
NnvoAC_OnOff implements nvoAirConditioner_OnOff;
nvoFurnace_OnOff implements nvoFurnace OnOff;
} fbHVACFunction external_name ('HVAC Function')

fb_properties {
nciHeartbeat,nciOffline,nciThrottle,nciHysteresis
}:
Multiple Functional Blocks with the Same UFPT

The following example demonstrates how to use a functional block array in a model file to create two
functional blocks that are instances of the same UFPT. You could then write a single FPM application
based on the UFPT. When you deploy the FPM application on the SmartServer and select the XIF
generated from this model file, the internal FPM device will include two functional blocks that are
separate instances of the same FPM application.

#define NUM_SWITCH_ENCODERS 2

network input SNVT_switch nviACSwitch[NUM_SWITCH_ENCODERS];
network input SNVT_switch nviFurnaceSw[NUM_SWITCH_ENCODERS];
network output SNVT_hvac _mode nvoHVACMode[NUM_SWITCH_ENCODERS];

fblock UFPTSwitchEncoder {
nviACSwitch[0] implements nviACSwitch;
nviFurnaceSw[0] implements nviFurnaceSwitch;
nvoHVACMode[0] implements nvoHVACMode;

} fbSwitchEncoder[NUM_SWITCH_ENCODERS] external name
("'Digital Encoder'™);

Multiple Functional Blocks with Unique UFPTs

The following example demonstrates a model file that creates two functional blocks that are instances
of two different UFPTs. You could then write separate FPM applications for the UFPTs instantiated
by the model file. When you deploy the FPM application on the SmartServer and select the XIF
generated from this model file, the internal FPM device will include two functional blocks that are
instances of their respective FPM applications.

////////7//7/7/7/7First FB instantiated/////////7//7//7///////7/7/7/7
#include <float.h>

network input SNVT_hvac_mode nviHVACMode;
network input SNVT_temp_ F nviSetPoint;
network input SNVT_temp_f nviTemp;

network output SNVT_switch nvoAC_OnOff;
network output SNVT_switch nvoFurnace OnOff;

network input SCPTmaxSendTime cp nciHeartbeat;
network input SCPTmaxRcvTime cp nciOffline;

network input SCPTminSendTime cp nciThrottle;
network input UCPTHysteresis cp nciHysteresis;

fblock UFPTHVACController {

nviHVACMode implements nviHVACMode;
nviSetPoint implements nviSetPoint;

Creating FPM Device Interface (XIF) Files

nviTemp implements nviTemp;
nvoAC_OnOff implements nvoAirConditioner_OnOff;
nvoFurnace_OnOff implements nvoFurnace OnOff;

} fbHVACFunction external_name ('HVAC Function'™)

fb_properties {
nciHeartbeat,nciOffline,nciThrottle,nciHysteresis
};
/////////////second FB instantiated//////////////////77////77

network input SNVT_switch nviACSwitch;
network input SNVT_switch nviFurnaceSw;
network output SNVT_hvac_mode nvoHVACMode;

fblock UFPTSwitchEncoder {

nviACSwitch implements nviACSwitch;
nviFurnaceSw implements nviFurnaceSwitch;
nvoHVACMode implements nvoHVACMode;

} fbSwitchEncoder external_name ("'Digital Encoder™);

Multiple Functional Blocks with Multiple UFPTs

The following example demonstrates how to use multiple functional block arrays in a model file to
create multiple sets of functional blocks that are instances of their respective UFPTs. You could then
write separate FPM applications for the UFPTs instantiated by the model file. When you deploy the
FPM applications on the SmartServer and select the XIF generated from this model file, the internal
FPM device will include arrays of the functional blocks that are separate instances of their respective
FPM applications.

#define NUM_HVAC FBs 2
#define NUM_SWITCH_ENCODER_FBs 2

#include <float.h>
//////7///7//7/First FB array instantiated//////////////////////7//77/77

network input SNVT_hvac_mode nviHVACMode[NUM_HVAC_FBs];
network input SNVT_temp_f nviSetPoint[NUM_HVAC FBs];
network input SNVT_temp_f nviTemp[NUM_HVAC_ FBs];

network output SNVT_switch nvoAC _OnOFF[NUM_HVAC FBs];
network output SNVT_switch nvoFurnace_ OnOff[NUM_HVAC_FBs];

network input SCPTmaxSendTime cp nciHeartbeat[NUM_HVAC FBs];
network input SCPTmaxRcvTime cp nciOFfline[NUM_HVAC FBs];

network input SCPTminSendTime cp nciThrottle[NUM_HVAC FBs];
network input UCPTHysteresis cp nciHysteresis[NUM_HVAC_FBs];

fblock UFPTHVACController {
nviHVACMode[0] implements nviHVACMode;
nviSetPoint[0] implements nviSetPoint;
nviTemp[0] implements nviTemp;
NnvoAC_OnOff[0] implements nvoAirConditioner_OnOff;
nvoFurnace_OnOff[0] implements nvoFurnace OnOff;
} fbHVACFunction[NUM_HVAC FBs] external _name ("'HVAC Function')
fb_properties {

i.LON SmartServer Freely Programmable Module User’'s Guide 55

56

nciHeartbeat[0],nciOFfline[0],nciThrottle[0],nciHysteresis|[0]
};

////////7/7/7///second FB array instantiated///////////////////7////777

network input SNVT_switch nviACSwitch[NUM_SWITCH_ENCODER_ FBs];
network input SNVT_switch nviFurnaceSw[NUM_SWITCH ENCODER_FBs];
network output SNVT_hvac_mode nvoHVACMode[NUM_SWITCH_ENCODER_FBs];

fblock UFPTSwitchEncoder {

nviACSwitch[0] implements nviACSwitch;
nviFurnaceSw[0] implements nviFurnaceSwitch;
nvoHVACMode[O] implements nvoHVACMode;

} fbSwitchEncoder[NUM_SWITCH_ENCODER_FBs] external_name ('Digital
Encoder™);

Multiple Functional Blocks with Multiple UFPTs and Same Data Point Names

The following example demonstrates how to use multiple functional block arrays in a model file to
create multiple sets of functional blocks that are instances of their respective UFPTs. In addition, this
example handles the scenario in which the data points in a UFPT have the same names. You could
then write separate FPM applications for the UFPTs instantiated by the model file. When you deploy
the FPM applications on the SmartServer and select the XIF generated from this model file, the
internal FPM device will include arrays of the functional blocks that are separate instances of their
respective FPM applications.

#define NUM_OF ADD FB 3
#define NUM_OF SUB_FB 2

////7/7777777//First FB array instantiated//////////////////////7/77

network input SNVT_count inl[(NUM_OF ADD FB + NUM_OF_SUB FB)]:
network input SNVT_count in2[(NUM_OF ADD FB + NUM_OF_SUB FB)]:
network output SNVT_count outl[(NUM_OF ADD FB + NUM_OF SUB_FB)];

fblock UFPTMathAdd {

inl[0] implements inl;

in2[0] implements iIn2;

outl[0] implements outl;

} fbMathAddFunction[NUM_OF_ADD_FB] external_name ('FpmAdd'™);

//////777777//second FB array instantiated/////////////////////7/7/77

fblock UFPTMathSubtract {

in1[NUM_OF_ADD_FB] implements inl; //can"t use [0] for second FB
in2[NUM_OF _ADD FB] implements in2; //so use next unused index
OUutl[NUM_OF ADD FB] implements outl;

} fbMathSubtractFunction[NUM_OF SUB FB] external _name ("'FpmSub™);

Saving your Model File

When you have finished creating your model, you need to save it as a Neuron C source file (.nc
extension) on your computer. The example above is stored in a model file named “HVAC.nc” in a
folder named “ModelFile” that has been created under the C:\LonWorks directory. The file path of the
source file in the example is therefore C:\LonWorks\ModelFile\HVAC.nc. You can then proceed to the
next section, which explains how to convert a model file to a XIF.

Creating FPM Device Interface (XIF) Files

In addition, you should create a <YourCompany> folder for your company under the
C:\LonWorks\Import folder if one does not already exist. This is where the XIF generated by the
i.LON SmartServer LonWorks Interface Developer tool will be stored.

Generating a Device Interface (XIF) File

You can convert a model file to a XIF using the i.LON SmartServer LonWorks Interface Developer
tool. This tool is a command line interface that requires you to type a few simple commands to create
the XIF. You just need to open a Command Prompt window and specify the file path of your model
file, your company’s program ID, and the destination file path where the XIF is to be stored. Once it
has been generated, you can copy the XIF (.xif extension) from the destination file path to the
root/lonWorks/Import/<YourCompany> folder on the SmartServer flash disk.

To generate a XIF and copy it your SmartServer, follow these steps

1. Verify that the full version of the i. LON SmartServer Programming Tools has been installed on
your computer. Installing the i.LON SmartServer Programming Tools installs the i. LON
SmartServer LONWORKS Interface Developer tool that you will use to create the XIF. For more
information on installing the i. LON SmartServer Programming Tools, see Chapter 2.

2. Open a Command Prompt window and then type the following command:

libilon --source=<model file path> --pid=<program ID> —-
out=<destination path> --basename=<XIF name >

For the example HVAC.nc model file shown in the previous section, you would type the following
at the command prompt (you would need to replace the sample program ID with your company’s
program ID, and you would need to replace the “YourCompany” folder in the
C:\LonWorks\Import directory with your company’s folder):

libilon --source=C:\LonWorks\ModelFile\HVAC.nc --
pid=9F:FD:3E:00:00:00:04:00 -—out=
C:\LonWorks\Import\YourCompany\HVAC --basename=Math

This creates device interface files named “HVAC” (.xif and .xfb extensions), and stores them in
the C:\LonWorks\Import\<Y ourCompany> folder.

Notes:

e The syntax used in the previous example demonstrates how to use the long form of the
command switches. Most command switches also have a short form that you can use. If you
wanted to use the short form of the required command switches used in the previous example,
you could type the following:

libilon -n=C:\LonWorks\ModelFile\HVAC.nc -
i=9F:FD:3E:00:00:00:04:00 o=C:\LonWorks\Import\YourCompany -
b=HVAC

Note that if you use the long form, you must insert a separator character (a space or the
equals sign [=]) between the command switch and the argument. If you use short form, the
separator character is optional.

See the next section, Using Long and Short Command Switch Forms, for more information on
using the short and long forms.

e You must separate the command switches with spaces.

3. Copy the XIF (.xif extension) generated in step 2 to the root/lonWorks/Import/<YourCompany>
folder on the SmartServer flash disk. Note that you may need to create the <YourCompany>
folder before copying the XIF.

i.LON SmartServer Freely Programmable Module User’'s Guide 57

58

Using Long and Short Command Switch Forms

Most command switches come in long and short forms. The long form consists of the verbose,
case-sensitive name of the command, and it must be prefixed with a double dash '- -'. Long command
switches require a separator (a single space or the equals sign [=]) between the command switch and its
respective argument.

The short form consists of a single, case-sensitive, character that identifies the command, and it must
be prefixed with a single forward slash /' or a single dash '-'. Optionally, short command switches may
be separated from their respective arguments with a separator (a single space or the equals sign [=]).

The following table demonstrates the long and short forms of the command switches you will typically
use to create XIFs.

Long Form Short Form

--source <file path> -n <file path>
-—pid=<program I1D> /i=<program ID>
--out=<destination path> /o<destination path>
-—basename=<File || Filepath> | /b <file>

Note: If no command switches or arguments follow the command name, the tool responds with usage
hints and a list of available command switches.

Other Command Switches

The following section lists the long and short forms of the other switches accepted by the libilon
command and describes the listed command switches.

Short

Long Form Form Description

--help -? Display usage hint for the command

--Ffile -@ Include a command file

--define -D Define a specified preprocessor
symbol (without value)

--defloc Location of an optional default
command file

-—include -1 Add the specified folder to the
include search path

--mkscript Generate command script in specified
location

--nodefaults Disable processing of default
command files

--silent Suppress banner message display

--verbosecomments -V Generate verbose comments

--verbose -V Run with one of the following
verbosity levels:
O(normal); 1(verbose); 2(trace)

—--warning Display specified message type as a
warning

Creating FPM Device Interface (XIF) Files

S

Creating Freely Programmable
Modules

This chapter describes how to use the i.LON SmartServer Programming Tool to
create new FPM projects and then write, compile, and debug FPM applications and
FPM drivers.

i.LON SmartServer Freely Programmable Module User’'s Guide 59

Creating FPMs Overview

60

You can use the full version of the i. LON SmartServer Programming Tool to create FPMs. The full
version of the i.LON SmartServer Programming Tool includes all the components needed to manage
an FPM project:

Eclipse Development Kit preconfigured for writing, building, and uploading FPMs.

FPM template files.

FPM library. A tool for creating the C structures of user-defined UNVTs is also included.
C++ compiler.

e CYGWIN environment.

Creating an FPM with the full version of the i.LON SmartServer Programming Tool, entails creating a
new FPM project or opening an existing project, writing the FPM application or FPM driver in C or
C++, and then compiling the FPM.

You can create a new FPM project from the user-defined functional profile template (UFPT) that you
generated with NodeBuilder Resource Editor and you uploaded to your SmartServer following the
steps described in Chapter 3, Creating FPM Templates. When you create the new FPM project, you
select whether you are creating an FPM application or an FPM driver. An FPM application reads and
writes values to the data points declared in it, executes an algorithm upon data point updates, reads
data point properties, and controls timers and executes code upon their expiration. An FPM driver
provides values for the data points declared in it by reading and writing to the RS-232 and RS-485
ports on the SmartServer. Once the FPM project has been created, you can add any user-defined data
types to your FPM that were not declared in the UFPT.

After you create a new FPM project or import an existing FPM project, you can write the FPM
application or FPM driver in C or C++. Writing the FPM application or FPM driver essentially
requires you to implement four main routines that specify the behavior of your FPM:
Initialize(), Work(), Shutdown(), and OnTimer(). The Initialize() routine is
executed when the FPM is started or enabled; the Work() routine is executed when a data point
declared in the FPM is updated; the Shutdown() routine is executed when the FPM is stopped or
disabled; and the OnTimer (Qroutine is executed when a timer expires.

You can debug your FPMs using a source level debugger (VxWorks 6.2 - Wind River Workbench 2.4)
that you can purchase from Wind River. If you are not using Wind River Workbench to debug your
FPMs, you should follow the FPM coding guidelines described in this chapter so that you can debug
your code more easily. For example, you should frequently insert printf() statements in your code
so that you can view the status of your FPM using the console port of the SmartServer. For more
information on ordering “WindRiver Platform for Industrial Services V3.2 for MIPS32 Processors”,
which includes Wind River Workbench, contact Wind River sales at
www.windriver.com/company/contact/index.html.

Once you finish writing the FPM, you can compile it. If your code has any errors or warnings, they
will be displayed in the Problems view at the bottom of the document window. You can click on the
errors and warnings listed in this view to debug your FPM. You can also check the Console view
(located to the right of the Problems view) to see if there is more detailed information available for a
given compiler error or warning.

Notes: To use the full version of the i.LON SmartServer Programming Tool, you must order and
install the i. LON SmartServer Programming Tools DVD. For information on ordering the i. LON
SmartServer Programming Tools DVD, contact your Echelon Sales Representative. If you have a trial
version of the i.LON SmartServer Programming Tool, you can write FPMs, but you cannot compile
and upload them.

If you have already created an FPM project and you want to modify your FPM application or FPM
driver, you can import your FPM project into the current workspace following the steps described in
the Importing Existing FPM Projects section in Chapter 2. After you import your FPM project, you
can proceed to the Writing an FPM Application or Writing an FPM Driver section.

Creating Freely Programmable Modules

http://www.windriver.com/company/contact/index.html

Creating New FPM Projects

You can create a new FPM project using the i.LON SmartServer Programming Tool. To create a new
FPM project, you do the following:

1. View the resource files on your SmartServer.

2. Create a new FPM application or FPM driver from the resource file set you added to the
SmartServer flash disk.

3. Declare the data points to which the FPM will read and write.

Viewing the Resource Files on a SmartServer
To view the resource files on a SmartServer, follow these steps:

1. Start the i.LON SmartServer Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer Programming Tools, and then click i.LON SmartServer
Programming Tools. The i.LON SmartServer Programming Tool opens.

2. Locate the LonMark Resource View at the bottom left-hand corner of the document window. A
SmartServer icon named localhost appears in this view.

& CIC++ - Eclipse SDK
File Edt Refactor Mavigate Search Project FPM Run Wwindow Help

Ein g E-g i t-0-Q MY iR LR Bt B e |
ER) C/C++ Projects ©3 . Mavigator Y BSYE0 =5)m~ " —0O

An outline is nok
available,

3
tis
4

Server/IP-Address: | |ocalhost

E Fa——
Problems £2 Console Propetties i (m]
& & locahost & Bl

0 errars, 0 warnings, O infos

Description Resource Path

T

3. Inthe Server/IP-Address box in the LonMark Resource View, enter the hostname or IP address
of your SmartServer and then click the Go button to the right. The hostname or IP address appears
next to the SmartServer icon.

i.LON SmartServer Freely Programmable Module User’'s Guide 61

62

L|:|r|I"-'1-ar'l=:. Resource Wiew X i . ,. 5By & Q;)('L“" ¥ =0

Server/IP-Address: | 10.2.124.82

Creating an FPM
To create an FPM application or an FPM driver, follow these steps:

1. Expand the SmartServer icon, and then expand the LonMark folder. The resource files in the
root/LonWorks/types folder on your SmartServer flash disk are shown.

LonMark Resource Wiews X ¥ b = ¥ G = 0

ServerIP-Address: | 10.2,124.82

= & 10.2.124.582

=170 LonMark,
@ frootflorworksbypesistandard. typ
@ froakflarwarkstypesfoserfechelan/bas_contraller byp
froatflorwarkstypesfoser fechelon/dc0131 . tvp
frootflonworkstypesiuserfechelon/dc0519, tvp
frootflorworks bypesiuser fechelon/echelon. byp
froakflanwarks typesioserfechelon/isilan, bvp
froatflorwarkstypesfuser fechelon/mbus_integrator, bvp
frootflonworkstypesiuserfechelon minikit, byp

L R R = R e e

erelelalalole)

froak flon, esiuserivourcompany fpm developrent. byp

2. Expand your company’s FPM resource file set, expand the Functional Profile Templates folder,
right-click the <company program ID>.UFPT<FPT Name>, and then click New FPM
Application on the shortcut menu.

Creating Freely Programmable Modules

L

() LonMa

R e Yiew X
Server/IP-Address:
E & 10.2.124.82
=17 LonMark,

@ Irootflonworkstypes/standard. typ

@ Iroatflonwarks typesfuser/echelon/bas_contraller . bvp

@ Irootflonworks typesfuserfechelon/dc0131 . byp

@ Iroatlonwarks typesfuserfechelon/dc0519.typ

@ Irootflonworks typesfuserfechelon/echelon. typ

@ [rootflonwarks typesfuserfechelon/isilan. typ

@ Irootflonworks typesfuser fechelon/mbus_integrator.typ

@ Irootflonwarks typesuserfechelon/minikit. byp

= @ Irootflonworksftypesfuser fyourcompanyFpm development. byp

ﬁ Configuration Property Tvpes
= #F Functional Profile Templates

I 4 0FFD3EO000000400[5]. UFPTHYACCantraller
= #9FFD3E0000000400[S]. UFPTMath ¥, Connection settings...
(= #9FFD3E00O0000400[5]. UFPTMathadd
I—E #OFFDEEOOO0000400[S]. UFPTMath3ubtr ack ﬂ Mews FPM Application. ..
35 #9FFD3E0000000400[5]. UFPTSwitchEncoder | -

% Mebwark Variable Types

_:".}‘; Import all Declarations

]

Alternatively, you can click the UFPT and then click the Create FPM icon (£.) at the top of the
LonMark Resource View.

3. The New Project dialog opens starting with the Managed Make C++ Project window.

& New Project @
Managed Make C+ + Project .
Create a new Managed Make C++ Project, @

Praject name: | 9FFDSENN00000400[5]. UFPTHYAC Cantraller |

Use defaulk location

@

4. Specify the project name and the location where the FPM project is to be stored on your computer.

a. The default project name is <company program ID>.UFPT<FPT Name>. You can accept the
default name, which is recommended, or you can enter a different project name. If you enter
a different project name, it should adhere to the following naming convention: <company
program ID>. <project>. This is because your company program ID serves as a namespace

i.LON SmartServer Freely Programmable Module User’'s Guide 63

that uniquely identifies your FPM and prevents naming collisions with FPMs from different

FPM vendors.

The default location where FPM projects are stored on your computer is

LonWorks\iLON\Development\eclipse\workspace.fpm. You can accept the default location,

or you can specify a different location. When you
folder with the specified project name is added to

create a new FPM project, an FPM project
this directory. The FPM project folder

contains the source code (.Cpp extension), utilities (utils.cpp extension), and header (.h

extension) files for the FPM application.

list (Executable, Shared Library, or Static

5. Click Next. The Select Project Type window appears.
& New Project El
Select a type of project y
Select the platform and configurations you wish ko deploy on &
Praoject Type: |FPM Application (Shared Library i.LON SmartServer) w
Configurations:
FiFRelease
[Ishow all Project: Types
[]show all Configurations
@ [< Back ” Mext = l I Finish] [Cancel l
6. 1In the Project Type list, select the type of FPM to be created. Select FPM Application (the
default) or FPM Driver.

e An FPM Application reads and writes values to the data points declared in it, executes code
upon data point updates, reads data point properties, and controls timers and executes code
upon their expiration.

e An FPM Driver provides values for the data points declared in it by reading and writing to
the RS-232 and RS-485 ports on the SmartServer.

Note: If you select one of the last three options in the

Library), you will receive a make error.

7.

Click Finish. A new FPM project folder with the name specified in step 4 is added to the C/C++

Projects view, and the source file view opens to the right of the C/C++ Projects view.

64

Creating Freely Programmable Modules

& C/C++ - UFPTHYACController.cpp - Eclipse SDK E]El

File Edit Refactor Mavigate Search Project FPM Run ‘Window Help

iTI-Ha & ¢ - i B0 ISy AR RR R CR R B (MR crc+ >
Rl c/c++ Projects 52 . Navigator SR =Nl F: 7 =5
) 15 SFFD3EN0D000N400[5] UFPTHYACCantroller

#include Juser/ yourcompany/ fom deve lopment. b ~
using namespace _SFFD3IE0000000400_5_;

/¢ <= secrtion dependent includes

using namespace _0000000000000000_0_;

using namespace Swartierver::FPM LIE VERSICH:
using namespace _SFFD3E0000000400_5_ UFPTHVACController APP:

I

% LonMark Resaurce Yiew 31 S e = c;;c* ¥ =0 /¢ =r section datapoint variable declarations. DO NOT REMOVE T
DECLLRE 0000000000000000_0 & s SNVT_t £, i T » INPUT DP

Server(IP-Address: | 102,124,682 ¢ — = —TEME_T, millsmm =

DECLARE{ _0000000000000000_0O_::3NVT_temp_f, nviSetPoint, INPUT
= & 10.2.124.82 DECLARE | _0000000000000000 0 ::SNVT hvac mods, nviHVACMode, IN
= LonMark DECLARE(_0000000000000000_0_::SNVT_switch, nvoldirConditioner
© @ frootflonmorksftypes/standard.typ DECLARE{ _0000000000000000_0_: :SH¥T_switch, nvoFurnace OnOff,
#- @ frootflonmorksitypesfuser echelon/bas_controller, typ DECLARE | _SFFDIEQO00000400_S_::UNVTTest, nviManliVe, INFUT DF |
#- @ frootflonmarksftypesfuser/echelon/dc0131 byp DECLARE{ _SFFD3EDO00000400_5_::UCPTHysteresis, ncilysteresis,
+ @ froctflonworks typesfuser fechelon/dc0S19 byp DECLARE | _0000000000000000_0_::3CPTmaxdendTime, ncileartheat,
+ @ froctflonworks typesiuser fechelon/echelon, typ DECLARE | _0000000000000000 0O ::3CPTmaxRcvTime, nociOffline, INP
#- @ rootflonworksftypesfuser jechelon/isilon typ DECLARE(0000000000000000 O ::SCPTminSendTime, nciThrottle, IY

] @ Jrootflonmarks typesfuser/echelon/mbus_integrator byp < >

- @) Jrootflanworksftypesjuser Jechelon/minikit typ [Problems 5 . Console | Properties =g

= @ Jrootflonworks typesfuser /vourcompanyfpm development.byp
&= ﬁ Configuration Property Types
=3 Functional Profile Templates

@ #9FFD3E0000000400[5], UFPTHYAC Controllsr

(5§ #9FFD3E0000000400[5]. UFPTMath

(5§ #9FFO3E0000000400[5]. UFPTMathAdd

@ #9FFDIE0000000400[5], UFPTMathSubtract

Cﬁ #IFFD3E0000000400[S]. UFPTSwitchEncoder

- ¥4 Metwork Variable Types

0 errors, 0 warnings, O infos
Description

=

IR

i 0 ltitable Smart Insert | 201 1

8. In the Data Point Variable Declarations section, located just below the namespace declaration, you
can observe that DECLARE statements have automatically been added to the source file for each
data point defined in the UFPT. The data points automatically declared includes standard and
user-defined types.

Note: If your UFPT includes any user-defined types, your company’s header files are
automatically added to the C:\LonWorks\iLON\Development\include folder located under the
FPM project’s Include folder, and an #include directive for your company’s header file is
automatically inserted in your source file

If you modify the UPFT used by your FPM, you can update the data point declarations as
described in the next section, Declaring Data Points. Otherwise, you can skip to the Writing an
FPM Application or Writing an FPM Driver section depending on the type of FPM you are
creating.

Updating Data Point Declarations

If you add new network variable and configuration property members to the UFPT used by your FPM
or you modify any of the existing members, you can add the new data points or update the existing
data points in the source file (.cpp extension).

To update the data points declarations in your source file, you first need to copy your company’s
updated resource file set to the root/LonWorks /types/User/<Your Company> folder on the
SmartServer flash disk and then reboot your SmartServer. See Chapter 3 for more information on
generating an updated resource file set and uploading the updated resource files to the SmartServer.

After you generate and copy your updated resource files set to the SmartServer, you can manually
import one to all of the data point declarations.

Manually Importing All Data Point Declarations

In the source file (.cpp extension) of your FPM, you can add new data points that has been created in
the UFPT, and you can update all the existing data points that have been modified in the UFPT. To do
this, follow these steps:

i.LON SmartServer Freely Programmable Module User’'s Guide 65

66

In the LonMark Resource View, right-click the UFPT from which the FPM project was created,
and then click Import All Declarations on the shortcut menu. Alternatively, you can click the
UFPT and then click the Import Declare() for All Data Points icon (=) at the top of the

LonMark Resource View.

& CIC++ - UFPTHVACController.cpp - Eclipse SDK

File Edit Refackor Mavigate Search Project FPM Run Window Help

B@ c/c++ Projects 53 B & ¥ =0
=15 SFFDIEN0D0000400(5]. UFPTHYACConkraller ~
2 Includes
(= Release
[R] UFPTHYACContraller.h
[UFPTHYACContraller_Ltils,cpp
UFPTHYAC Controlier.cpp
=5 9FFD3E0000000400(S].UFFTMath

Navigator

ri- T e @S-G R0

=% SFFD3EDO00000400[5] UFFTMathSubtract v
, TEEEL Y T A

Server(IP-address: [10,2,124.52

= & 10.2.124.82 ~

(=170 LonMark.

@ iractlonworksitypes/standard.typ

@ iractflonworksitypesfussriechelonibas_controller.typ
@ iractflonworksitypesfuserfachelonidc0131 typ

@ frootflonworks types/user fechelonidc0S19.typ

@ frootflonworks types/user fechelonjechelon.typ

Q-i®sF i LeRER o | B crot | ”
[UFPTHVACController.cpp 52 =0
#include "./user/yvourcompany/ fpm development.h™ F

using namespace _SFFDIEO0O0O0O0400_S_:
// <= gection dependent includes
using namespace _0000000000000000_0_;

using namespace SmartServer::FPN LIE VERSION;
using namespace _9FFD3EO0000000400_S_ UFPTHVACCOntroller LPF;

i

/f =r secrtion datapoint variashle declarations. DO NOT REMOVE THIS :
iBNVT_tewp £, nviTewp, INFUT_DP)

tBNVT_tewp £, nvijetPoint, INPUT_DP |
f18NVT_hvac_mode, nvilVACHode, INPUT I
$SNVT_switch, nvokirConditioner OnOf:
$SNVT_switeh, nvoFurnace_OnOE£Ef, OUTPI
:UCPTHysteresis, ncilysteresis, INPU
:5CPTwaxSendTime, nciHeartbeat, INPU"
:3CPTwaxRevTime, nciOffline, INFUT DI
:S5CPTwinSendTime, nciThrottle, INPUT

DECLARE(_0000000000000000_0_:
DECLARE(_0000000000000000_0_:
DECLARE [_0000000000000000_0_:
DECLARE(_0D000000000000000_0_:
DECLARE(_0D000000000000000_0_:

DECLARE(_SFFD3EO0O00000400 5 :
DECLARE(_0D000000000000000 0O_:
DECLARE(_D000000000000000 0O_:
DECLARE(_D000000000000000 0_:

i

i
@ froatflonworksjtypes/user fechelonjmbus_integrator typ
@ irootllonworks{types/userfecheloniminit.typ <
@ irootflonworksitypes/userfyourcompany ffpm development.tyr.
2 Configuration Property Types
=% Functional Profile Templates

=-S5

LI RS e R R

i

@ froctilonworksitypes/user echelonfisilon typ
i
i

[2 problems &2

1.UFPTI Descrintion
== niHearthest -> #00000000000000
== neiysteresis - #SFFDIEAOODOO040

= ncioffling -> #0000000000000000[0] 54 ey FPM Applicatian...
= neiThrattle -> #0000000000000000[C
= nwiH¥ACMade -> #00000000000000C
-
=
=

tralle
o0 ¥, Comnection settings...

nviManhive -3 #9FFDIE0000000400[!
neiSetPaint - #0000000000000000[1
nviTemp -3 #0000000000000000[0].SHVT temp

b andiiees AeOFE S #ARARAAANOARNN

0

0 errors, 0 warnings, 0 infos

Console Froperties v =0

Note: Verify that you are currently working in the source file (.cpp extension) before importing
the data point declarations (the tab of the current code view is highlighted blue or white depending
on whether it has focus). If you add the data point declarations to a different file, your FPM will

not function and the file in which the data point

Updated DECLARE statements for each data poi

declarations were imported may also not function.

nt defined in the UFPT are added to the data point

declaration section just below the namespace declaration.

Creating Freely Programmable Modules

€ CIC++ - UFPTHVACController.cpp - Eclipse SDK [[Ea[Es)

File Edt Refactor Mavigate Search Project FPM Run Window Help
O-He i€ | §
E@ cfc++ Projects 52
=125 SFFDBE00D0000400{5].UFPTHYACContraller
! Includes
(= Release
[R UFPTHYACContraller.h
[UFPTHYACContraller_Ltils, cpp
[UFPTHYACContraller.cpp
=5 SFFD3ED000000400[5] UFPTMath
15 SFFDIEN00D000400(S] UFFTMathSubtract

Navigator

5 Configuration Property Types
=3 Functional Profils Templates
=5 #9FFD3E0000000400[5].UFPTHYACController

@S-G B0 A B -

AR R R | B cpc+ |

»

=8

-~

I

// =» section datapoint variabhle declarations.

DO NOT REMOVE THIS ¢
:SMNVT_temp f, nviTewp, INFUT DF)

:SNVT_temp f, nviSetPoint, INFUT DP |
:SNVT_hvac_mode, nviHVACHade, INPUT I
f8MVT_switch, nvolirConditioner Onof:
t8NVT_switch, nvoFurnace_onOff, OUTF!
tUNVTTest, nvillanWVe, INPUT _DP |

DECLARE(_0000000000000000 0O_:
DECLARE(_0000000000000000 0O_:
DECLARE{ _0000000000000000_0_:
DECLARE{ _0000000000000000_0_:
~/|| DECLRRE[_0000000000000000_0_:
DECLARE|| _SFFD3E0000000400_5_:

O errors, 0 warnings, 0 infos
Description

5 + = - =
) LonMark Resource View 23 ALENEEGS S| becrare: TOFFD3E0000000400_5_: : UCPTHysteresis, ncilysteresis, INPU
Server/IP-address: | 10.2.124.82 DECLARE { _0000000000000000_0_: : SCPTwaxSendTime, ncileartheat, INPUY
) DECLARE (_0000000000000000_0_: : SCPTwaxRovTime, nciOffline, INPUT DI
= & 10.2.124.82 i DECLARE (0000000000000000 O ::SCPTminSendTime, nciThrottle, INPUT
B LonMark - - 1
@ froctilonworks{types/standard typ // <= section datapoint varizble declarations. DO NOT REMOVE THIS
@ frootflonworks typesfuser fechelonibas_contraller.typ m
@ frootflonworks types/userfechelonidc0131.typ
@ froatflonworksjtypes/user fechelonjde0519.typ
@ froctflonwarksjtypes/user fechelonjechelon. typ iy
@ irootflonwcrksitypesjuserfechelonfisilon.typ /¢ ==» the one =nd only instance
@ irootjlonworksitypesjuserfechelonfmbus_ntegrator byp vy v
@ irootflonworks{types/userfechelonfminikt.typ < >
=@ froctflanworkstypesfuseryourcompary fpm development. ty T ot B~ Conmok [rorern: = -n

s ndHeartbeat - > #0000000000000000[0],5CPTm
niHysteresis -> #3FFDIEN000000400[S].UCFTH
neioffline -> #0000000000000000[0]. SCPTmaxF.
nciThrattle -3 #0000000000000000[0]. 5CPTrin
nwiHYACMode -3 #0000000000000000[0].SMYT,
neiManhive -3 #9FFDIE0000000400[S].UNVT Te:
neiSetPaint - #0000000000000000[0].5NYT_te
neiTemp - #0000000000000000[0). SHYT_temp

i im b i AmOEE % #ARARAARNNARNN

BRBREEE

I Writable Smark Insert | 3516

Manually Importing Individual Data Point Declarations

In the source file (.cpp extension) of your FPM, you can individually add new data points that has been
created in the UFPT, and you can individually update existing data points that have been modified in
the UFPT. To do this, follow these steps:

1. Inthe LonMark Resource View, expand the UFPT from which the FPM project was created to
show all the mandatory and optional data points defined in the UFPT.

CELY T
Server/IP-Address: | 10,2, 124,57
@ Jrootflonworks)typesystandard. byp ~

@ Irootflonwarks)typesfuserfechelonfbas_contraller.typ
Irootflonwarks)typesfuserfechelonfdc0151 .bvp
Jrootflonworks)typesfuserfechelonfdc0S19.typ
Irootflonwarks)typesfuserfechelonfechelan.typ
Jrootflonworksitypesiuser fechelon/isilon.typ
Jrootilonworks)typesiuserfechelonfmbus_integrator.typ
Irootflonwarks)typesfuserfechelonminikit.bvp
Jrootflonworksitypesiuser frourcompany ffpm development. byp
ﬁ Configuration Property Types
=8} Functional Profile Templates
= P 400[5].UFPT] traller

s neiHeartbeat - #0000000000000000[0].5CPTm

s nrHyskeresis - # 9FFD3E0000000400[5]. UCPTH
nciQffline - = #0000000000000000[0].3CPTmaxk
nciThrottle - = #0000000000000000[0], 5P Tmin®
nviHYACMode - = #0000000000000000[0]. ST
nviManiye - = #AFFD3IE0000000400[5]. UMY T Te:
nviSetPoint - #0000000000000000[0].5MYT _te
nviTemp - = #0000000000000000{0].5MYT_temp
nvodirConditioner_OnOFF - > #00000000000000(
nvaFurnace_Ondff -» #0000000000000000[0].:

[N e B R SR = A R)

®
@
@
@
@
@
@

PEBReBEE

2. Right-click the data point to be declared in the FPM and then click Import Declaration on the
shortcut menu. Alternatively, you can click the data point and then click the Import Declare() for

Selected Data Point icon (_};) at the top of the LonMark Resource View.

i.LON SmartServer Freely Programmable Module User’'s Guide 67

3.

4.

& CIC++ - UFPTHVACController.cpp - Eclipse SDK gg‘

File Edit Refactor Mavigate Search Project FPM Run Window Help

G-EBE & fE- e[GO0 e B B & | B oo | ”
E@ cfc++ Projects 52 Mavigatar - &7 7 7 O [4 *UFPTHYACController.cpp 52 =0
=] 'b': SFFD3EN000000400[5). UFPTHYACConkroller ~ ~
& fncludes i
(= Release // =r section datapoint varisbhle declarations. DO NOT REMOVE THIS ©
UFPTHYAC Cantraller.h DECLARE (_0000000000000000 0_: : SNVT_temp_£, nviTewp, INPUT_DP)
[UFPTHYACCantraller_tils.cpp DECLARE (_0000000000000000 O_::SNVT temp £, nviSetPoint, INPUT DP |
@ UFPTHYACController.cpp DECLARE(_0000000000000000 0_::SNVT_hvac_mode, nviHVACHMode, INPUT]
bc 9FFD3EN000000400(5].UFFTMath DECLARE(_0000000000000000 0_::SNVT_switch, nvolAirConditioner OnOf:
'b':QFFDBEDDDDDDMDD[S]‘UFPTMathSuhtract v DECLARE(_0000000000000000 0_::SNWT_switch, nvoFurnace OnOff, OUTFI

: . & v =@ PECLARE[STFDIED0O0000400_S_::UCPTHysteresis, ncifysteresis, INPT
551 51 = = © DECLLRE (_0000000000000000_0_: : SCPTwaxSendTine, ncilearthear, INFT
Server/IP-address: | 10.2.124.52 DECLLRE (_0000000000000000_0_: : SCPTwaxRovTime, neiOffline, INPUT_DI
DECLARE { _0000000000000000_0_: : SCPTminSendTime, nciThrottle, INPUT
s raotflanworksitypesfuserfechelonfbas_controller.typ ~ -~ 1
B rostlorworkstypesfuse fschelonfdc0131 typ // <= section datapoint varisble declarations. DO NOT REMOVE THIS :
3 [rootflonwarks typesfuser fechelonfdc0519.byp m
3 [rootflanwarks typesfuser fechelanfechelon byp
B Jrootflonwarks{types/userfechelonfisilon. typ
B Irootflenworksitypesjuserfechelonfmbus_integrator typ i
B frootflonveorks frypesjuser fechelonjminikit.typ // ==> the one and only instance
B frootflanworkstypesiuserfyourcompany [fom development.typ i
5! Configuration Property Types static FPH::TStarter<CUFPTHVACControllers> STARTER(FPM HODULE MAME ¥
= B} Functional Profie Templates < >
=3 #9FFDIE0000000400(5).UFPTHVACConkraller = e
= noiHeartbeat -> #0000000000000000[0] SCPTmaxSendTime {2 Protiens 2 " Console Properties - g
= nciHysteresis -> #9FFDIENO0000400[S]. UCP THysteresis 0 errors, 0 warnings, 0 infos
= ncioffing - #0000000000000000[0).5CPTmaxRey Time Description
= neiThroktle - #0000000000000000[0]. SCPTminsendTims
= nviHYACMode -> #0000000000000000[0]. SKYT_hvac_mads
- 3 =
= niSetPoint - #0000000000000000[0). SKYT_ten L Connection settings...
= nyiTemp -> #0000000000000000(0] SMVT _temp |
= nvoairConditioner_OnOFF -3 #0000000000000001
= nvoFurnace_ONOFF -3 #0000000000000000[0.5
L5 #9FFD3E0D00000400[S).UFFTMath
BB wnEEnAEARAARARARATEY | iERT <k A
B Import Declaratio Y

P,

An updated DECLARE statement for the selected data point is added to the data point declaration
section just below the namespace declaration.

Repeat steps 2—3 to add or update additional data points in the UFPT.

Writing an FPM Application

You can write an FPM application using the i. LON SmartServer Programming Tool. An FPM
application reads and writes to the data points declared in it, reads data point properties, executes code
upon data point updates, and controls timers and executes code upon their expiration. To create an
FPM application, you specify the logic to be executed on the data points in the following four routines:
Initialize(), Work(), OnTimer (), and Shutdown():

68

The Initialize() routine is executed when the FPM application is started or enabled. In the
Initialize() routine, you can set the initial values for data points, and you can start timers
using the Start() method of the CFPM_Timer class or the START_TIMER() macro.

The Work () routine is executed when one or more data points declared in the FPM application
are updated. In the Work() routine, you write an algorithm that is executed when a specified
data point is updated. In the algorithm, you can read data point properties and write values to the
data points. In addition, you can start and stop timers.

The OnT imer () routine handles timer expiration events. You can use this routine in conjunction
with the Start() methods or the START _TIMER() macros called in the Initialize()
routine. You can create an algorithm in this routine that read data point properties and writes
values to the data points upon the expiration of a timer. In addition, you can start and stop timers.

The Shutdown () routine is executed when the FPM application is stopped or disabled as a
result of a reboot. In the Shutdown() routine, you stop timers and perform any required
cleanup.

Creating Freely Programmable Modules

The i.LON SmartServer Programming Tool works with raw data point values. You must remember to
use the appropriate scale factors to convert raw data point values to scaled values. You can go to
types.lonmark.org/index.html to check the scale factors uses for the SCPTs and UCPTs in the current
LONMARK standard resource file.

The Writing the FPM Application Initialize() Routine

The Initialize() routine is executed when the FPM application is started or enabled. You can
use this routine to write initial values to the data points declared in your FPM application. In addition,
you can use this routine to start timers, which you can use in an FPM application to implement tasks
that need to be performed regularly such as checking the status of data points. For more information
on writing values to data points, see the next section, Writing the FPM Application Work() Routine.

The following code demonstrates how to set initial data point values and start timers in the
Initialize() routine:

DECLARE(_0000000000000000_0_: :SNVT_temp_f, nviSetPoint,
INPUT_DP)

CFPM_Timer m_oTimerl; //declared in header file
CFPM_Timer m_oTimer2; //declared in header file
CFPM_Timer m_oTimer3; //declared in header file

void CUFPTHVACController::Initialize()

{
//set initial data point values
nviSetPoint = O;
nviTemp = 0;
nciHystereis = -17.77778;
//start timers
m_oTimerl._Start(FPM_TF_REPEAT, 2000);
m_oTimer2.Start(FPM_TF_ONETIME, 3000);
START_TIMER(m_oTimer3, FPM_TF _REPEAT, 2000, OnMyTimer3);
// to do: create OnMyTimer3()routine to handle m_oTimer3
3

Note: Initialized input data point values are not propagated to output data points when the
Initialize() routine executes. Input data point values are only propagated to output data points
when the Work () routine executes as a result of an input data point value changing.

Declaring and Initializing Timers

To use a timer in your FPM application, you must first declare it as a member of the CFPM_T imer
application class in the header file (.h extension) of your FPM application and then initialize it in the
source file (.cpp extension). To declare and initialize a timer, follow these steps:

1. Open the header file. To do this, either double-click the header file (.h extension) in the C/C++
Projects view or right-click it and then click Open on the shortcut menu. The header file view
opens to the right of the source file view.

2. Scroll to the “Mandatory Application Members” section in the header file, and then declare the
timer using the following syntax:

CFPM_Timer m_oTimerl; //declare a timer
CFPM_Timer m_oTimer2; //declare a timer
CFPM_Timer m_oTimer3; //declare a timer

i.LON SmartServer Freely Programmable Module User’'s Guide 69

http://types.lonmark.org/index.html

3. Click the tab for your source file (.cpp extension), scroll to the “Constructor/Deconstructor”
section, and directly below the CUFPTApp: : CUFPTApp)
: CFPM_App(FPM_MODULE_NAME, CFPM_App::eApplication) constructor, initialize
the timer using the following syntax:

, m_oTimerl(this) //initialize timer
, m_oTimer2(this) //initialize timer
, m_oTimer3(this) //initialize timer

Starting Timers

You can start timers using the standard Start() method of the CFPM_Timer class or the
user-defined START_TIMER() macro. Note that when you start timers, you should set the timer
interval to @ minimum of 100ms.

Using the Start() Method

The Start() method of the CFPM_Timer class is the standard approach for starting timers. It
causes the FPM application to call the OnT imer (Qroutine, which handles the timer expiration event.
The Start() method has the following syntax:

void Start(FPM_TimerFlags t eMode, uint_t nTimeoutMillis);

The eMode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT for a
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMillis parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

The following code demonstrates how to create repeating and one-time timers using the Start() method:

CFPM_Timer m_oTimerl; // declared in header file
CFPM_Timer m_oTimer2; // declared in header file
, m_oTimerl(this) // initialized in source file
, m_oTimer2(this) // initialized in source Tile

m _oTimerl.Start(FPM_TF_REPEAT, 2000);
m _oTimer2.Start(FPM_TF_ONETIME, 3000);

Using the START_TIMER() Macro

The START_TIMER() macro is an alternative approach to creating and starting timers. It causes the
FPM application to call a user-defined timer handler method, which must be declared in the header file
(.h extension) of your FPM application. Note that you can declare and initialize an unlimited number
of timers and create an unlimited number user-defined timer handler methods for them. The
START_TIMER() method has the following syntax:

START_TIMER(timeVar, mode, timeoutMillis, funcName)
The timeVar parameter specifies the name of the timer to be started.

The mode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT fora
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMi Il is parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

The funcName parameter specifies the name of the user-defined timer handler method hat is
called when this expires.

Timers started with the START_TIMER() macro must be handled in your source file (.cpp extension)
with a user-defined timer handler method that has the following signature:

void <funcName>()

Creating Freely Programmable Modules

You must declare your user-defined timer handler method in the “Implements the User Functionality”
section of the header file (.h extension) of your FPM application.

The following example demonstrates a START_T IMER()macro that starts a timer that repeats every 3
seconds and is handled by the OnMyT imer3 ()user-defined timer handler method.

CFPM_Timer m_oTimer3; // declared in header file
, m_oTimer3(this) // initialized in source file

START_TIMER(m_oTimer3, FPM_TF_REPEAT, 2000, OnMyTimer3);

void OnMyTimer3(); // declared in header file

See the Programmer’s Reference in Appendix A for more information on starting timers in the
Initialize() routine and using timer handler methods.

Writing the FPM Application Work() Routine

The Work () routine is executed when one or more data points declared in the FPM application are
updated. In the Work() routine, you write one or more IF-THEN(-ELSE) statements that use the
Changed() method to evaluate whether the data points in the FPM application have been updated
and execute an algorithm if they have been updated.

In the algorithm, you can directly read and write values to the data points declared in your FPM
application without using any additional methods. In addition, you can read the statuses, names, and
times of last update of the data points using a collection of data point property methods, and you can
start and stop timers. For more information on starting timers, see the previous section, Writing the
FPM Application Initialize() Routine.

The following code demonstrates how you can create a Work (Q)routine in your FPM application. In
this example, the Work (Qroutine first checks whether the data points declared in the FPM application
have been updated. If one of the data points has been updated, the Work (Qroutine gets the statuses
the data points, checks whether the data points are in normal condition, and then reads and writes
values to them if they are in normal condition.

void CUFPTHVACController: :Work()

{
SNVT_switch tempAirConditioner;

if ((Changed(nviSetPoint) || Changed(nviTemp)) &&
(nviHVACMode == 3)) // HVAC_COOL = 3
{
nviSetPoint_status =
nviSetPoint.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);
printf ('nviSetPoint _status = %d", nviSetPoint _status);

nviTemp_status =
nviTemp.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);
printf ("'nviTemp_status = %d", nviTemp_status);

if (nviSetPoint_status == 0) &&
(nviTemp_status == 0) //AL_NO_CONDITION
{

if (nviTemp > (nviSetPoint + nciHysteresis))
{
nvoAirConditioner_OnOff->value = 200;
nvoAirConditioner_OnOff->state = 1;
PROPAGATE (nvoAirConditioner_OnOff);

i.LON SmartServer Freely Programmable Module User’'s Guide 71

72

printfF ("Temp = %F, SetPoint=%f, AC is
ON /n", *nviTemp, *nviSetPoint);

}
}
}
}

Checking for Data Point Updates

You can use the Changed () method in the Work () routine to determine whether the value of a data
point has changed. This method takes a data point declared in the FPM application. If the value of the
data point has changed, it returns TRUE; otherwise, it returns FALSE. The following example
demonstrates how you can use the Changed () method to check whether the values of the data points
in your FPM application have changed.

it (Changed(x) |] Changed(y))
{
//execute some algorithm if the values of x or y have changed
}
Reading Data Point Properties

You can read the name, time of last update, and status of each data point declared in the FPM
application in the Initialize(), Work(), and OnTimer (Qroutines. To read these data point
properties, you use a collection of get property methods belonging to each data point. The methods
that you can call to read the data point properties are as follows:

//read data point name

const char* GetDpPropertyAsString(FPM: :Dp::cfgUCPTname);
//read data point alias name

const char* GetDpPropertyAsString(FPM: :Dp: :cfgUCPTAliasName);
//read data point time of last update

timespec GetDpPropertyAsTimeSpec(FPM: :Dp::dataUCPTlastUpdate);
//read data point status

FPM: :Dp: :PointStatus
GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);

The following code demonstrates how to read data point properties using these methods:

void CUFPTHVACController::Work(Q)

{
FPM: :Dp: :PointStatus nviSetPoint_status;

const char* nviSetPoint_name;
const char* nviSetPoint_AliasName;
timespec nviSetPoint_ lastUpdateTime;

nviSetPoint_name =
nviSetPoint._GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname);

nviSetPoint_AliasName =
nviSetPoint.GetDpPropertyAsString(FPM: :Dp: :cfgUCPTAliasName);

nviSetPoint_lastUpdateTime =
nviSetPoint.GetDpPropertyAsTimeSpec(FPM: :Dp: :dataUCPTlastUpdate);

Creating Freely Programmable Modules

nviSetPoint_status =
nviSetPoint.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);

}
Reading Data Point Values

You can directly read the values of the scalar, structured, and enumerated data points declared in your
FPM application in the Work () routine. Upon reading the data points, you can execute code based on
the current values stored in them.

Reading Scalar Data Points

You can directly read the value of a scalar data point declared in your FPM by simply referencing its

name.
void CUFPTHVACController: :Work()
{
IT (nviTemp > nviSetPoint + (nciHysteresis*1.8+32))
//execute some code
}
}

Reading Structured Data Points

To read the value of a structured data point, you first need to store the data point field in a temporary
data point variable. Note that you use the —> operator (element selection through pointer) to reference
the fields of a structured data point. The following code demonstrates how to read the fields of a
structured data point:

void CUFPTHVACController::Work(Q)

{
SNVT_switch tmpSwitch;

nvoAirConditioner_OnOff->state;
nvoAirConditioner_OnOff->value;

tmpSwitch.state
tmpSwitch.value

if (tmpSwitch.state == 0)
{

}

it (tmpSwitch.value >= 145)
{

}
}

Reading Enumerated Data Points

//insert code here

//insert code here

To read the value of an enumerated data point, you need to use the values of the corresponding
enumeration type. The following code demonstrates how to read the following enumeration types:

e An hvac_t enumeration in the standard.h file in the LonWorks\iLON\Development\
include folder

e A pointStatus enumeration in the FPM_variable.h file in the
LonWorks\iLON\Development\eclipse\plugins\com.echelon.eclipse.ilon100.fpm_0.9.0\
compiler\echelon\fpm\include folder.

DECLARE(_0000000000000000_0_: :SNVT_temp_f, nviSetPoint, INPUT_DP)
DECLARE(_0000000000000000_0_: :SNVT_hvac_mode, nviHVACMode, INPUT DP)

void CUFPTHVACController: :Work()

i.LON SmartServer Freely Programmable Module User’'s Guide 73

74

FPM: :Dp: :PointStatus nviSetPoint_status = FPM::Dp::AL_NUL;

it (nviHVACmode == hvac_t::HVAC_HEAT) //HVAC_HEAT

{
nviSetPoint_status = (FPM::Dp::PointStatus)
nviSetPoint.GetDpPropertyAsPointStatus
(FPM: :Dp: :dataUCPTstatus);
}
if (nviSetPoint_status == FPM::Dp::AL_NO _CONDITION)
{
//insert code here
}

}
Writing Data Point Values

You can write updated values to the scalar and structured data points declared in your FPM application
in the Work () routine. The updated values are then written back to the data points when the FPM
application exits the Work () routine. You can directly write an updated value to a scalar data point
by simply assigning it a value.

nviTemp = 77.5;
nviSetPoint = 72;

Writing an updated value to a structured data point requires a few additional steps. You can directly
write values to the fields of a structured data point and then mark the data point as modified, or you
can create temporary data point variables and use them to write values to the fields of your structured
data points. The following sections describe how to write values to a structured data point using each
of these methods.

Directly Writing to a Structured Data Point

To directly write a value to a structured data point, you use the —> operator (element selection through
pointer), and you then mark the data point as modified using the PROPAGATE () macro. The
following code demonstrates how to write to a structured data point using this method:

DECLARE(_0000000000000000_0_: :SNVT_switch,
nvoAirConditioner_OnOff, OUTPUT_DP);

void CUFPTHVACController::Work(Q)

{
// use variable directly and tell the system that this value /

should be written back to the data point

nvoAirConditioner_OnOff->value = 200;
nvoAirConditioner_OnOff->state = 1;
PROPAGATE(nvoAirConditioner_OnOff);

}
Using Temporary Data Point Variables to Write to a Structured Data Point

To use a temporary data point variable to write to a structured data point, you declare a temporary data
point in the Work () routine, store the desired values in the various fields of the temporary data point,
and then assign the declared data point a reference to the temporary data point variable. The following
code demonstrates how to write to a structured data point using this method.

Creating Freely Programmable Modules

DECLARE(_0000000000000000_0_: :SNVT_switch,
nvoAirConditioner_OnOff, OUTPUT_DP)

void CUFPTHVACController::Work()
{
SNVT_switch tmp;
tmp.value = 200;
tmp.state 1;
nvoAirConditioner_OnOff = tmp;

// change detected and written to data point automatically

}

See the Programmer’s Reference in Appendix A for more information on writing values to structured
data points.

Writing to Enumerated Data Points

To write to an enumerated data point, you need to use the values of the corresponding enumeration
type. The following code demonstrates how to write to an hvac_t enumeration in the standard.h
file in the LonWorks\iLON\Development\include folder:

DECLARE(_0000000000000000_0_: :SNVT_hvac_mode, nvoHVACMode, OUTPUT_DP)

void CUFPTHVACController: :Work()

{
SNVT_switch ACSwitch;

SNVT_switch FurnaceSwitch;
ACSwitch.state = nviACSwitch->state;
FurnaceSwitch.state = nviFurnaceSwitch->state;

if ((tmpACSwitch.state == 1) &&
(tmpFurnaceSwitch.state == 0))
{

nvoHVACMode = hvac_t: :HVAC_COOL;
printf ("'HVAC MODE = %i /n'", *nvoHVACMode);

}
Writing the FPM Application OnTimer() Routine

The OnTimer () routine is executed when a timer started with the Start() method in the
Initialize() routine expires. You can use this routine to read the properties of the data points
declared in the FPM application. This is useful for implementing tasks that need to be performed
regularly such as checking data point status and sending data point updates (heartbeats). For more
information on reading data point properties in an FPM application, see the previous section, Writing
the FPM Application Work() Routine.

Note that if you started more than one timer using the Start() method of the CFPM_Timer class,
you must first identify the timer that expired using the m_oTimer .Expired() method.

The following code demonstrates how to create an OnT imer () routine that handles the expiration of
a single timer started with the Start() method of the CFPM_Timer class.

void CUFPTHVACController::Initialize()

{
m_oTimerl.Start(FPM_TF_REPEAT, 2000);

i.LON SmartServer Freely Programmable Module User’'s Guide 75

}
void CUFPTHVACController::OnTimer()

//check for data point alarm conditions
if (nviSetPoint_status == 1) // AL_ALM_CONDITION
printf (“'SetPoint status = %d', nviSetPoint status);

nviTemp->value=78;
PROPAGATE (nviTemp);

}

if (nviTemp_status == 1)// AL_ALM_CONDITION

{
printf ("Temp status = %d", nviTemp_status);
nviTemp->value=78;
PROPAGATE (nviTemp);

}

}

The following code demonstrates how to create an OnT imer ()routine that handles the expiration of
multiple timers started with the Start() method of the CFPM_Timer class. Observe that the
m_oTimer.Expired(Qmethod is called first to determine which of the two timers started in the
Initialize() routine expired.

void CUFPTHVACController::Initialize()

{
m _oTimerl.Start(FPM_TF_REPEAT, 2000);
m_oTimer2.Start(FPM_TF_ONETIME, 3000);
}
void CUFPTHVACController::OnTimer()
{
if (n_oTimerl.Expired())
// do some task
}
if (n_oTimer2._Expired())
// do some task
}
}

You must create custom OnMyT imer () routines for each user-defined timer you started with the
START_TIMER()macro inthe Initialize() routine. The following code demonstrates how to
create ONMy T imer (Qroutines that handle the expiration of their respective timers started with the
START_TIMER(Q) macro.

void CUFPTHVACController::Initialize()

START_TIMER(m_oTimer3, FPM_TF_REPEAT, 2000, OnMyTimer3);
START_TIMER(m_oTimer4, FPM_TF_REPEAT, 2000, MyTimerHandler4);

}

void CUFPTHVACController::OnMyTimer3(Q)
{

76 Creating Freely Programmable Modules

//do some task to handle expiration of the m oTimer3 timer

}
void CUFPTHVACController::MyTimerHandler4()

//do some task to handle expiration of the m_oTimer4 timer

}

See the Programmer’s Reference in Appendix A for more information on starting timers and using
timer handler methods.

Writing the FPM Application Shutdown() Routine

The Shutdown () routine is executed when the FPM application is stopped or disabled. In the
Shutdown () routine, you stop timers and perform any required cleanup. You can stop a timer using
use the Stop()and StopAl ITimers()methods of the CFPM_Timer class.

e The StopTimer () method causes the system to stop the referenced timer.

o The StopAlITimers()method causes the system to stop all timers.

The following code demonstrates how you can stop timers in the Shutdown () routine:
void CUFPTHVACController: :Shutdown()

{
m_oTimerl.Stop();

StopAllTimers();
}

See the Programmer’s Reference in Appendix A for more information on stopping timers.

Writing an FPM Driver

You can write an FPM driver using the i. LON SmartServer Programming Tool. An FPM driver
creates data points on the SmartServer and provides values for them by reading and writing to the RS-
232 and RS-485 ports on the SmartServer. To create an FPM driver, you specify the logic to be
executed on the data points in the following four routines: Initialize(),Work(), Shutdown(),
onTimer():

e The Initialize() routine is executed when the FPM driver is started or enabled. In the
Initialize() routine, you start timers using the Start() method of the CFPM_Timer class
or the START_TIMER() macro, open the RS-232 and RS-485 ports on the SmartServer, and
write to the properties of the data points declared in the FPM driver.

e The Work() routine is executed when one or more data points declared in the FPM driver are
updated. In the Work () routine, you write one or more IF-THEN(-ELSE) statements that
evaluate whether the values of the data points in the FPM have been updated. If the data points
have been updated, you initialize communication between your FPM and the RS-232 or RS-485
serial interface and then write to the interface. You can also read the properties of the data points
declared in the FPM driver in this routine.

e The OnTimer () routine handles timer expiration events. In the OnTimer () routine, you
initialize communication between your FPM and the RS-232 or RS-485 serial interface when a
timer started in the Initial ize() routine expires. You can then read and write to the RS-232
or RS-485 interface, write updated values to the data point declared in the FPM driver, and read
the properties of the data points.

e The Shutdown() routine is executed when the FPM driver is stopped or disabled as a result of a
reboot. In the Shutdown () routine, you stop timers, close the RS-232 and RS-485 ports on the
SmartServer, and perform any required cleanup.

i.LON SmartServer Freely Programmable Module User’'s Guide 77

Writing the FPM Diriver Initialize() Routine

The Initialize() routine is executed when the FPM driver is started or enabled. You can use this
routine to start timers; open the RS-232 or RS-485 serial interface on the SmartServer; and write to the
properties of the data points declared in the FPM driver.

e You can start timers using the Start(Qmethod of the of the CFPM_Timer class and the
START_TIMER(Q) macro as described in Writing the FPM Application Initialize() Routine.

® You can open the RS-232 serial interface using the rs232_open() method. You can open the
RS-485 serial interface using the rs485_open() method.

e You can set the default values, persistent flags, poll rates, and unit strings of the data points
declared in the FPM driver using the following collection of data point properties.

//write datapointdefaultvalue in raw hex
void SetDpProperty(FPM: :Dp: :cfgUCPTdefOutput, const int nVlaue);

//set whether data point is persistent
void SetDpProperty(FPM: :Dp: :cfgUCPTpersist, const bool bvalue);

//write datapointpoll rate inmilliseconds
void SetDpProperty(FPM: :Dp: :cfgUCPTpol IRate, const int nValue);

// writedatapointunitstring
void SetDpProperty(FPM: :Dp: :cfgUCPTunit,
const char* const pszValue);

The following code demonstrates the methods you can create in the Initial ize() routine in an
FPM driver for the RS-232 interface:

DECLARE(_0000000000000000_0_ ::SNVT_str_asc, Linel, INPUT _DP)
DECLARE(_0000000000000000_0_::SNVT_switch, F1_Pressed, OUTPUT_DP)

CFPM_Timer m_oDisplay_ InputTimer; // declared in header file
int RS232 fd = -1;

void CUFPT_Display::Initialize()

{

// start timer

m_oDisplay_InputTimer.Start(FPM_TF_REPEAT, 10000);

// open the RS232 interface

RS232_fd = rs232_open(RS232_DEFAULT_BAUDRATE);

//set Linel DP poll rate

F1 Pressed.SetDpProperty(FPM: :Dp: :cfgUCPTpol IRate, 800);
}

See the Programmer’s Reference in Appendix A for more information on writing the RS-232 and
RS-485 interface methods and writing timer methods.

Writing the FPM Driver Work() Routine

The Work () routine is executed when one or more data points declared in the FPM driver are
updated. In the Work() routine, you write one or more IF-THEN(-ELSE) statements that use the
Changed() method to evaluate whether the data points in the FPM driver have been updated.

If a data point has been updated, you initialize communication between your FPM and the devices
connected to the RS-232 and RS-485 serial interfaces. You can initialize communication with the

78 Creating Freely Programmable Modules

RS-232 serial interface using the rs232_ioctl (Qmethod. You can initialize communication with
the RS-485 serial port using the rs485_setparams()and rs485_ioctl (Qmethods.

Once you initialize communication, you can directly write to the RS-232 and RS-485 serial interfaces
without using any additional methods. You can also read data point properties using the methods
described in Writing the FPM Application Work() Routine.

void CUFPT_Display::Work()
if (Changed (Linel))
{

int nBytesToRead;
rs232_ioctl(RS232_fd, FIONREAD, (int) &nBytesToRead);

printf("'update for Linel (%s)/n', Linel->ascii);

//write Line 1 text to RS-232 interface
rs232_write(RS232_fd, (Byte *)Linel->ascii,
strlen((char*)Linel->ascii));
}
}

Writing the FPM Driver OnTimer() Routine

The OnTimer Qroutine is executed when a timer started with the Start(Qmethod in the
Initialize() routine expires. You can use this routine to initialize communication between your
FPM and the devices connected to the RS-232 and RS-485 serial interfaces, read data from the
RS-232 or RS-485 interface, write updated values to data points, and read data point properties.

If you started more than one timer using the Start()method of the CFPM_Timer class, you must
first identify the timer that expired using the m_oTimer .Expired() method. In addition, you
must create custom ONMy T imer () routines for each user-defined timers you started with the
START_TIMER()macro in the Initial ize() routine.

You can initialize communication with the RS-232 and RS-485 serial interfaces using the methods
described in the previous section, Writing the FPM Driver Work() Routine. You can write data point
values and read data point properties using the methods described in Writing the FPM Application
Work() Routine.

The following code demonstrates how to create an OnT imer (Qroutine for an FPM driver.

void CUFPT Display::OnTimer()
{
if (n_oDisplay InputTimer.Expired())
{
int nBytesToRead;
rs232_ioctl(RS232_fd, FIONREAD, (int) &nBytesToRead);

//check whether something has been read
it (rs232_read(RS232_fd, Linel, 1) == 1)

{
printf (""Read %c from RS232/n', Linel);

//1T something has been read, write it to display device
rs232_write(RS232_fd, (Byte *)"F1 Pressed",
strien("F1_Pressed™));

F1 Pressed->state = 1;

F1 Pressed->value = 200;
PROPAGATE(F1_Pressed);

i.LON SmartServer Freely Programmable Module User’'s Guide 79

}
}
}
Writing the FPM Driver Shutdown() Routine
The Shutdown() routine is executed when the FPM driver is stopped or disabled. In the

Shutdown () routine, you close the RS-232 or RS-485 interface, stop timers, and perform any
required cleanup.

To delete a timer, you can use the StopTimer () or StopAlITimers() methods. To close the
RS-232 interface, you use the rs232_close() method. To close the RS-485 interface, you use the
rs485_ close(Q)method.

The following code demonstrates how you can close an RS-232 interface and stop timers in the
Shutdown() routine:

void CUFPT Display::Shutdown()

{
m_oDisplay_InputTimer.Stop();

rs232_close(RS232_fd);
}

See the Programmer’s Reference in Appendix A for more information on stopping timers and closing
the RS-232 and RS-485 interfaces.

Compiling an FPM

Once you finish writing an FPM, you can compile it with the i. LON SmartServer Programming Tool.
If your code has any errors, they will be listed with any warnings in the Problems view at the bottom
of the document window. You can click on the errors and warnings listed in this view to debug your
FPM. Following the coding guidelines described in this section will help you debug your code.

To compile your FPM, click File and then click Save. You will upload this file to the SmartServer as
described in the next chapter, Deploying Freely Programmable Modules. If the build is not performed,
click Project and then click Build Project. You can then click Project and select Build
Automatically so that your FPM applications are built automatically when you save them.

Note: If a dialog appears prompting you to enter a license, you need to install the full version of the
i.LON SmartServer Programming Tools on your computer in order to build your FPM application. To
order the full version of the i.LON SmartServer Programming Tools, contact your Echelon sales
representative.

Checking Compile and Warning Errors

If your code has any compile errors or warnings, they will be listed in the Problems view at the bottom
of the document window. You must resolve the errors and re-compile your FPM to create a successful
build and upload it to the SmartServer. You do not need to address the warnings in order to create a
successful build, but you should fix them because they typically indicate future bugs.

80 Creating Freely Programmable Modules

Console | Propetties :~=::> - = H

1 error, 1 warning, 0 infos
Descripkion Resource
= B Errors (1 item)
error: " AL_NC DITION' undeclared (first use this Function) LUFPTHY&CC
= - Warnings (1 item)
& warning: unused variable * _0000000000000000_0_;: SKNYT_switch tempFurnace’ UFPTHYAC o
< | >

To resolve an error or warning, click the error or warning in the Problems view. The focus should
switch to the line of code generating the error or warning, which is marked with an error or warning
symbol.

traller.cpp X

| >
u

if (nviTewp > nvidetPoint + (nocilysteresis*1.8+32))

1
tryiTemp_status = nvifetPoint.GetDpPropertylisFoint3tatus (FPM: :Dp: tdata
printf ("nviTemp status = 3d", nviTemp status);

if [(mwviTemp

printf ("IS TEMP > SIETPPOINT + HYST “n'n"):
tcewplirConditioner.value = 200;

templirConditioner.state = 1;
wvolirConditionsr Onoff = templirConditioner;
PROPAGATE (nwolirConditioner OnOff):
printt ("Tewp = %f, SetcPoint=3%f, Hysteresis = $f, AirConditioner
i
} =
else if [(nwiTewp < nwiSetPoint - [(neiHysteresis®1.5432))

i
printf ("I3 TEMP « IETFPOINT - HYST “ni\n"):
W

templirConditioner.valuse = 0O: =
< | >

Once you correct all the compile errors and the warnings, click File and then Save to re-compile your
code.

Tip: You can also check the Console view (located to the right of the Problems view) to see if there is
more detailed information available for a given compiler error.

Using Non-Latin Characters

The Eclipse environment uses Cp1252 text encoding by default. If you insert non-Latin characters in
your code, you need to implement additional steps to save your FPM project and to display the
characters.

If you want to save an FPM project that has non-Latin characters, but do not need to view the
characters in the code, you can change the default text encoding for your FPM project to UTF-8. To
do this, follow these steps:

1. Click Window and then click Preferences. The Preferences dialog opens.

i.LON SmartServer Freely Programmable Module User’'s Guide 81

& Preferences |Z|EJ El

Workspace
&- Gsneral See 'Startup and Shutdown’ For workspace startup and shutdown preferences.
Appearance
Capahilities
Compare/Patch [Build automatically
Content Types []refresh automatically
Editors Save automatically before buid
Kevs
Perspectives
Search WWorkspace save interval {in minukes): |5

Skartup and Shukdow,
wWeb Browser
Welcome

Workspace

Ak

CiC++ Texk file encoding Mew bext File line delimiter

Help (%) Default {Cp1252) () Defaulk

InstalfUpdate
Other: Other:
1ava (rother () other

Plug-in Developrment
ResourceBundle Editar
RunfDebug

Tearm

Open referenced projects when a project is opened
O ahways (O'Mever (3 Prompt

[R = R R e)

[Resture Defaults l [apply]

)] I oK l [Cancel]

2. Inthe Text File Encoding box, click Other and then select UTF-8 from the bottom of the list.

Tezxk file encoding
() Default (Cp1252)

(%) Other: v |

3. Click OK. You can now save your FPM project.

If you want to save an FPM project that has non-Latin characters and display the characters in your
code, you can change your Windows Regional Settings to the native language of the characters. To do
this, close the i.LON SmartServer Programming Tool, open the Control Panel, click Regional and
Language Options, select the desired language in the Standards and Formats box, and then click
OK. When you re-open the i.LON SmartServer Programming Tool, you will observe that the change
has been implemented.

Debugging FPMs

82

The SmartServer uses a VxWorks® real-time operating system to run its embedded applications. If
you need a source level debugger (VxWorks 6.2 - Wind River Workbench 2.4) or access to VxWorks
system calls not encapsulated in the Echelon FPM API, contact Wind River” sales at
www.windriver.com/company/contact/index.html for more information on ordering “WindRiver
Platform for Industrial Services V3.2 for MIPS32 Processors”.

If you plan on debugging your FPMs with Wind River Workbench, you need to backup and then delete
the current iLonSystem image on your SmartServer flash disk, copy the iLonSystemWdb image on
your computer to your SmartServer flash disk, re-name the iLonSystemWdb image on your
SmartServer to iLonSystem, reboot the SmartServer, create a debug configuration of your FPM in the

Creating Freely Programmable Modules

http://www.windriver.com/company/contact/index.html

i.LON SmartServer Programming Tool and upload it to your SmartServer, and then connect the
Workbench debugger to the iLonSystemWhbd image on your computer via the target server.

If you are not using Wind River Workbench to debug your FPMs, you can still perform some
debugging by adhering to a number of guidelines. These guidelines include connecting the computer
running the i.LON SmartServer Programming Tool to the i.LON console port, bracketing your code,
and liberally inserting printf() statements in your code.

Using Wind River Workbench

Echelon provides iLonSystemWdb, which is a bootable VxWorks system image (kernel) with the
WDB debugger network connection set to WDB_COMM_NETWORK (instead of
WDB_COMM_END). You can use this WDB_COMM_NETWORK for Task Mode debugging only.
Because the WDB_COMM_NETWORK connection uses the full VxWorks network stack, using the
WDB_COMM_NETWORK connection and Ethernet-connected Task Mode debugging is fast and
reliable—even over the public Internet.

For a WDB connection to work, you must ensure that UDP port 17185 is open in both directions on all
hardware and software firewalls between the debugging host computer and the target SmartServer.
This includes firewalls on your host computer and your corporate network.

Note that you cannot use the WDB_COMM_NETWORK for System Mode debugging. System Mode
debugging is commonly used for debugging the VxWorks system image, interrupt service routines,
and other debugging with interrupts disabled. These are tasks that are not typically performed in the
FPM development environment (Echelon does not provide the source code for iLonSystemWdb).

If you are debugging your FPMs with Wind River Workbench, you need to perform the following
steps to create a debug configuration of your FPM and connect the i. LON system image to Wind River
Workbench.

1. Backup the current iLonSystem image on the root directory of your SmartServer flash disk. You
can copy the iLonSystem image to the local drive of your computer, a USB drive, a floppy disk,
another removable media, or a shared network drive with read/write permissions. After you
create the backup, delete the iLonSystem image from the SmartServer flash disk.

2. Copy the iLonSystemWdb image from the
LonWorks/iLON/Development/Debug/ES_Debug.4.00.<software version> folder on your
computer to the root directory of your SmartServer flash disk.

3. Re-name the iLonSystemWdb image you copied to the SmartServer flash disk to iLonSystem.

4. Reboot the SmartServer using the i. LON SmartServer Programming Tool, the SmartServer Web
pages, or the SmartServer console application.

e To reboot your SmartServer using the i.LON SmartServer Programming Tool, click FPM,
and then click Reboot i.LON SmartServer (alternatively, you can click the Echelon logo in

the menu bar [<]). The Reboot i.LON SmartServer dialog opens. Enter the IP address or
hostname of your SmartServer and then click OK.

e To reboot your SmartServer using the SmartServer Web pages, right-click the local
SmartServer, point to Setup, and then click Reboot on the shortcut menu. The Setup —
Reboot dialog opens. Click Reboot to start the reboot.

e To reboot your SmartServer using the SmartServer console application, enter the reboot
command. For more information on using the SmartServer console application, see the i.LON
SmartServer User’s Guide.

5. Create a debug configuration for your FPM project in the i.LON SmartServer Programming Tool,
following these steps:

a. Inthe C/C++ Projects View, right-click your FPM project folder at the top and then click
Properties in the shortcut menu.

i.LON SmartServer Freely Programmable Module User’'s Guide 83

84

& CJIC++ - Eclipse SDK
File Edit Refactor Mavigate Search Project

mil = =

- oig- et -

FFM FRun indow Help

G- i%-0-

= Includes
= Release
[W UFPTHvACConkroller b
@ UFPTHvACConkroller _Utils.cpp
- [€] UFPTHYACContraller.cpp

= 53{

=

Server/IP-Address: | 10,2,124.111

#E0000100000000

LonMark Resource Yiew 28

Mew

4 E“S‘PVDEWP
1
13

Go Inko

Cpen in Mew Window

Rebuild Index

Active Build Canfiguration 4

EBuild Praject
Clean Project

|=| Copy

@ Faste

3 Delets
Mowve. ..
Renarne

E=g Impart...
£ Expart...

qgh Refresh
Close Project

#8000010000000
#5000010000000
#8000010000000

m R

Run As
Debug As
Team
Compare With

Restare From Local History ..

PDE Tools

- v v v

Corveert To. .

b. The Properties dialog opens.

Creating Freely Programmable Modules

& Properties for, 8000010000000000[3].UFPTHVYACController,

Info

Builders

CJC++ Build

CIC++ Documentation
CIC++ File Types
CiC++ Indexer
Project References

C/C++ Build

Active configuration

Project Type:

Configuration: |Release

v| [Manage...]

Configuration Settings

Tool Settings | puild Settings | Buid Steps | Error Parsers | Binary Parser | Environment | Macras |

=83 Compiler
@ Preprocessor
2 Includes
@ Optirnization
@ Debugging
@ ‘Warnings
(2 Miscellaneous
B3 MunchCompiler
53 Muncher
=583 Linker
2 Libraries
(2 Miscellaneous

Command: |

CEMIps -C |

All options:

DCPU=MIPS3Z -DTOOL_FAMILY=gnu
-DTOOL=sfgnu -I_WRS_KERMEL =
-DMIPSEE -DSOFT_FLOAT -DILON100
-DILOM_PLATFORM -DINETE

-I'CriLontorks|iLON Developmentieclips o,

Command
line pattern:

Expert settings:

| $1COMMAND} $FLAGS} ${OUITPUT_FLAGHS |

[Restore Defaults] [Apply]

[Ok H Cancel]

c. Click Manage. The Manage dialog opens.

& Manage

Manage configurations

X

Conwvert

Tool chain conversion targets: |

Mewy. ..

-

Remove

d. Click New. The Create Configuration dialog opens.

& Create configuration @

Tame; |

Drescription: |

Copy settings From
() Defaulk configuration:

@ Existing configuration:

Release

K

Cancel

i.LON SmartServer Freely Programmable Module User’'s Guide

85

86

e. Inthe Name box, enter Debug.

& Create configuration @

Mame: | Debug|

Descripkion: |

Copy settings From
() Default configuration:

@ Existing configuration;

Release

[o

H Cancel]

f. Click OK twice to return to the Properties dialog.

g. Inthe Tool Settings tab, click Debugging.

h. Inthe Level box, select Default (-g).

& Properties for 8000010000000000[3].UFPTHYACController,

Info

Builders

CC++ Build

CJ/C++ Documentation
C{C++ File Types
CJC++ Indexer
Project References

C/C+ + Build

Active configuration

Project Type:

- B

Configuration: | Debug

v| [Manage...]

Configuration Settings

Tool Settings | Buid Settings

Build Steps | Errar Parsers | Binary Parser | Environment | Macras

B8 Compiler
@ Preprocessar
2 Includes
@ Optirmization
@ Debugging
@ ‘Warnings
(2 Miscellaneous
B8y MunchCompiler
3 Muncher
= E83 Linker
(2 Libraries
(2 Miscellaneous

Other |
[CIPraf (-p)
[CI&Prof (-pg)

[Restore Defaults] [Apply]

Lo JI

Cancel]

Click OK and then close the Properties dialog. A Debug folder now appears in the C/C++
Projects View between the Includes and Release folders.

Creating Freely Programmable Modules

Mavigator = q>¢' = =0

B =5 8000010000000000[3]. UFPTHYACContraller
g Includes
=] 0cbug
= Relzase
[UFPTHVACCoRtroller.h
@ UFPTHYACController_Utils.cpp
[€ uFPTHYACCoRtroller.cpp

j- Upload the debug configuration of your FPM to your SmartServer. To do this, expand the
Debug folder, right-click the <company program ID>.UFPT<FPM name>.app file and then
click Transfer to i.LON SmartServer in the shortcut menu. In the Install FPM Module
dialog, enter the IP address or hostname of your SmartServer in the Host box, select the
Reboot check box, click Finish, and then click Yes to confirm the rebooting of your
SmartServer.

6. Connect the Workbench debugger to the iLonSystemWdb image on your computer via the target
server, following these steps:

Verify that the WorkBench registry is running.

b. Right-click anywhere in the Target Manager view, point to New, and then click
Connection... on the shortcut menu.

T Device Debug - httpRpmFileSystem.c - Wind River Workbench

File Edit Refactor Mavigate Search Project Analvee Run Target Window Help

il TR R AR TR Sl 4 S
FaE i
\Project ... | File Navi... |E® Symbel .. 52 _=' 0| [hetpRpmFileSystem.c 52 € hetp)
B M B A |;| ‘?}3‘ = | |ciiProjiiLont DevihttpiRprihttpRpmFileSys)
— 25® /7]
Marne Filter: | | 35
36

Signature File:
37 #include "string.h"

358 #include "stdio.h'
39

40 #include "http/htopl
41 #include "http/http
42 "http/httpl

tatic HTTP_GEN LIZT|

xtern HTTP_BOOL httf
xtern void httpSetq
xtern HTTP_EOOL htt

®tern char* httpGet]
A
ITTF_GEN LIST ID htt|
(
unsigned short 3
1
{
return | httpF=q
¥

Rename
¥ Delete

Show Target Server Log...

O

— Target Manager 3 Target Tools 13
B st i '
= G dsfault (ocalh [collapse Al ITTP_GEN_LIST ENTRY
R 0.2) Expand ol T 7
%vxsimﬂ o & Refresh char * szUrl,

= Refresh Properties. .. €har * SEFoRook

= : B

| = Properties F

I EFFEFEEET Tasks Problems Properties %

c. The New Connection dialog opens. In the Connection Type window, select the WindRiver
VxWorks 6.x Target Server Connection and then click Next.

i.LON SmartServer Freely Programmable Module User’'s Guide 87

88

%) New Connection

Connection Type

Please select connection type.

‘Wwind River OCD ICE Connection
“Wind River OCD 155 Connection
‘Wwind River OCD Probe Connection

In the Target Server Options window, enter the IP address or hostname of the SmartServer
on which the FPM to be debugged is installed.

In the Kernel Image box, click File, click Browse, and then browse to the

LonWorks/iLON/Development/Debug/ES Debug.4.00.<software version> folder on your
computer.

Creating Freely Programmable Modules

arget Connection

Target Server Options

Review and customize the target server opkions.

Mame | tgt_172,22,100,220 | shared: [

Bssociabed kargek platform: Wind River Yonarks B2

Target Server Options |0bject Path Mappings | Target State Refresh | Defaulk Breakpaoint Options |

Backend settings

Backend: iwdbrpc VE Cpu: i(deFauIt from target) v|

Target name | IP address: | 172.22.100.220 v|

Kernel image
(C)File path from target (i available)

(&) File: ! C A LonworksiiLOn Development| DebughiL M 100 4, 00%iLonSystemivdb vl Browse..,

Bypass checksum comparison

Advanced target server options

Verbose target server output

Options: | -R C:WindRiverfiLONys -RY -BE 3 - | [Edt... |

Command Line:

tatswr -¥ -R o indRiver fiLONws -RMW -BE 5 -c "Cr\LonwarksiLON DevelopmentDebughil OM100
4.00iLonSystemiwdb® -bC -4 172,22,100.220

@ [Ok “ Cancel]

Click Finish. The iLonSystem image and the FPM executable module (.app extension)

appear in the Target Manager view.

x IEEIGELIE I)

es/iLon100Main, mod

iLon100Main. mod: 0xF11738 - M
b 30 - Sy

[Lom.drv:0x2050d10 - Module name: Tronk/madules /Lo, drv

[lonscanner.mad:0:xF2c140 - Madule name: Irook/madules/lonScanner . mod

8 IeaHost. mod:0xf26398 - Module name: froot/madules)itaHost . mad

[#] rni.mod:0xF12578 - Module name: Iroot/madulesrri.mad

[#] sDPulseCounter.mod:0:xF33588 - Madule name: Jronk/madules)sOPulseCaunter . mod

[#] sasicramtds. mod: 0xF34680 - Module name: Iroot/madules/SASLsasiCramids. mod

il sasllibrary . mod:0xf2eets - Madule name: frootfmodules/sasiLibrary . mad

[saslLoginmod:0xf49518 - Module name: J'rDDtJ'I‘nDdu|ESJ'SF\ISLfsaS|LDCIin.de

odule name: frootimodul

<

bl file: C:fLonwo M/Development/DebugfiLOMN100 4. 00fiLonSy

emwdb

P

Add the symbols in your FPM to the target server, following these steps:

In the Target Manager view, right-click your FPM executable module (.app extension), and

then click Load/Add Symbols to Debug Server on the shortcut menu.

i.LON SmartServer Freely Programmable Module User’'s Guide

89

90

| [} Disconnect 'tot_172.22.100.220°
¥ Connect MemScope
| = Connect Profilescope

[Kernel Objects

| 3 Unload Module. ..

B Target Tools 3

= G default (joc 8, Torgek Made |
i [EE tot_10. =] Collapse Al
E‘ % tgt_l?% I Expand all
& @ps %;, Refresh e

P =l Refresh Properties...
(N 50000100 UFPTMath.app - Mod!
[eventlog.mad:0xF397d0 - Module name: froct,
B iLansystem; Oxeffadn - Symbal file: C: WindRiv |
B sasluibrary.mod:0xfbal 60 - Madule name: jrool -C:,Il\
: 8 webServer.mod:0xF99258 - Symbol file: CijProf | Mak
i E wxsim0 (Wind River WxWorks 6.2)

-
mak
Idrmi
iy
4 | > <

The Load/Add Symbols to Debug Server dialog opens. In the Symbol Files and Order
box, click Add and then browse to the debug configuration of your FPM.

ad/Add Symbols to Debug Server

Select the files containing the symbals ta load or add to the debug server For the selected context.

Symbol Load Context
Connection: | tgk_172.22,100,220@ianphan |

Care: | SKoiworks 6.2 |

Container: | #8000010000000000[3], UFPTMath. app |

Mote: For modules, only one symbol file can be activated For loading and previously loaded symbaols are
replaced!

Symbol Files and Order

¥ | File
M CiiLonworksiiLoN Development)eclipseworkspace. FpmiE00001 0000000000[3]. UF. .

Symbol Load Options {#8000010000000000[3], UFPTMath. app, 32 bit)
(%) specify module load offset:

() Specify section start addresses:

Section Mame Section Start Address

Create path mappings for the module based on the selected symbol file

[a4] [Cancel

Creating Freely Programmable Modules

c. Click OK. The symbols in your FPM are now loaded in the Target Manager view. Symbol
icons should appear on the icons representing the FPM executable module and the
iLonSystem image.

B of i | CEW X8| &-7 70
kgk_172.22.100.220 (Wind River Vx\Warks 6.2) Fabi
=4 Sk (wiworks 6.2)
[+ kernel Tasks

Real Time Processes

5 UFPTMath. ap ol
il #8000010128000000[4].UFPT alarmbotifier . app: 0x20506bS - Module name: Jrootmodulesf#8000010128000000]
B #8000010128000000[4].UFPTanalogFunctionBlock, app: 0x20502b0 - Module name: froot/modules #50000101 280
| #E000010128000000[4].UFPTcalendar. app: 0x2050018 - Madule name: frook/madules/#800001012800000004].L
E |#BDDDD1Ell28000000[4].UFPTdataLogger.app:DbuaSGD - Module name: frootimodules)#8000010125000000[4].UFP

[#3000010125000000741.UFPTdiaitallnout . ano:0xfba4al - Madule name: fraatimadules/#50000101 25000000741,
| >

<

6. Use WindRiver Work Bench to debug your FPMs, following these steps:
a. Expand the Kernel Tasks icon.

b. Inthe Target Manager view, right-click the FPM task and click Attach to Kernel Task
(Task Mode) on the shortcut menu.

Mew... |

A=F Disconmect 'tgt_172.22.100.220'
#4 Connect MemScope
E‘ Connect Profilescope

¥ pownlaad. .
% Run Kernel Task. ..,
% Debug Kernel Task.

[Kernel Objects

3 Delete Kernel Task

Target Toaols 4
£ artach Hast Shell
4, Target Mode 4

| [=] Collapse Al
] Expand Al
j | & | Refresh F5
"J(‘ﬁ Yerr | Refresh Properties
H @
ﬁ’_{, #5000010123000000[4]. UFPTalarmbotifier:0xg =
; @‘_{. #5000010128000000[4]. UFPTanalogFunctionBh.
@, #AO000101 ZA000000[4]. LIFFT slendar i ha
@y, #EN000101 280000004, LIFPTatal ngger il
@, #5000010125000000(4]. UFPTdigitallnput: 081
@y, #B000010128000000[4]. UFPTdigitalOutput: 0w
@, #B000010128000000[4] UFPTnodeObject:0xa1
‘3?1, #50000101 28000000[4]. UFPTpulseCaunter :0xt
@’_1, #B000010128000000[4]. UFPTrealTimeClock: 0w
i e?_ip #80000101 28000000[4]. UFPTscheduler:0x81ce
H 9;1. #80000101 28000000[4]. UFPTtypeTranslator :0:
@, alarmiotifier::mailClient:Cxs1b8f640 [Pand]
B, basicCM:0xE11h1c60 [Pend+T]
8y, builder: 0x80fbSaz0 [Pend]
: Qj, connianager: 0x8124d260 [Pend+T]
ﬁ?;; dataserver:0x8124ec30 [Pend]
o b il

s

<

c. The Debug view opens, and you can now use the Symbol Browser view search for symbols
in your FPM code.

i.LON SmartServer Freely Programmable Module User’'s Guide 91

92

o G =5

00 m &Y =S &

520 (Running)

d. In the Symbol Browser view, first verify that the Debug icon (@%i) is enabled. In the Name
Filter box, you can search for the symbol for which you want to set a breakpoint.

Project Mavi... | File Mavigator w

g

Mame Filter: | hktpRpmFs | Hide matching

Signature File
2 htkpRpmFs

e. Once the symbol appears in the Symbol Browser view, double-click it. The source file view
displays the routine to be debugged.

f. In the source file view, double-click the line number in the routine to set a breakpoint.

Using FPM Development Guidelines

You can perform some debugging of your FPMs by adhering to the following guidelines when
developing your FPM:

Physically connect the computer running the i. LON SmartServer Programming Tool to the i.LON
console port using an RS-232 null modem cable. This enables you to use a Terminal emulator
such as Windows HyperTerminal to view the i.LON console port and debug your FPMs during
runtime. After the FPM is initialized you can use Telnet to view the i.LON console port.

Back up the FPM project frequently. Always make a back up after you make significant changes
to an FPM application and successfully compile it.

Bracket comments around those portions of the FPM application that you have written. For
example, you can do the following:

// mycode — begin ----——————— -
outl = inl + in2;
// mycode — end —-—-——-—-————————

Add your user help functions to the UFPT<FPM>_Ultils.cpp file (this file is created when you
create a new FPM project). This further isolates your code for debugging, and it enables you to
port the code over to another FPM project.

Insert printf()statements in your code frequently. This enables you to do some debugging
with the console port of the i.LON during runtime, as the console port will receive the
printf()statements. The following example demonstrates a printf()statement that you can
use to debug your code.

printf('[%s %i] value of %s: %d",
__FILE__,

Creating Freely Programmable Modules

__LINE__,
inl._GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname),
*inl);
Note that console port displays the status of your FPMs during a reboot.
It is especially important to follow these guidelines because the compiler errors you may receive may
only have a generic description that does not indicate which line of code caused the error. In addition,

the errors may not appear on the actual line of code causing the error; instead, an error may appear one
or two lines above the incorrect code.

i.LON SmartServer Freely Programmable Module User’'s Guide 93

94

Creating Freely Programmable Modules

6

Deploying Freely Programmable
Modules on a SmartServer

This chapter describes how to use the i.LON SmartServer Programming Tool to
upload FPMs to one or more SmartServers. It explains how to select a network
management service (LNS or Standalone) for running your LONWORKS network. It
describes how to create, commission, and connect, and test FPM devices on the
SmartServer. It describes how to create a custom configuration Web page for FPM
applications. It explains how to update FPM applications. It describes how to deploy
FPMs on multiple SmartServers and it describes how to deploy licensed FPMs.

i.LON SmartServer Freely Programmable Module User’'s Guide 95

FPM Deployment Overview

96

After you write and compile an FPM application or driver, you can deploy it on your SmartServer.
This enables you to apply the algorithms defined in the FPM application or FPM driver to the data
points on the SmartServer. Deploying an FPM application entails uploading the FPM to your
SmartServer, adding a device representing the FPM application on the SmartServer, commissioning
the FPM device if you are going to bind the data points in the FPM application with LonWorks
connections, testing the FPM application, and then connecting the data point in the FPM device with
LONWORKS connections or Web connections.

Note: To deploy an FPM driver, you only need to upload the FPM driver to your SmartServer.

You can upload FPMs to one or more SmartServers that have an FPM programming license installed
on them using the i.LON SmartServer Programming Tool. After an FPM has been uploaded to a
SmartServer, you need to verify that you have selected a network management service mode (LNS or
Standalone) for running your LONWORKS network.

Once you have selected a network management service, you can create an FPM device on the
SmartServer. To do this, you add a new internal device to the LON channel in the SmartServer tree.
If you are integrating your FPM application with another LNS application such as the LonMaker tool,
the internal FPM device must use a static interface. To use a static interface for your FPM, you select
the device interface (XIF) file from the root/lonworks/import/<YourCompany> folder on the
SmartServer flash disk. This is the XIF file that you generated for your FPM with the i.LON
LonWorks Interface Developer tool (see Chapter 4 for more information on creating XIF files for
FPMs).

If you are running your network with the SmartServer operating as a standalone network manager, the
internal device can use a static or dynamic interface. To use a dynamic interface, you select the
SmartServer’s v40 XIF from the root/lonworks/import/Echelon/iLON100 folder, and you then add a
dynamic functional block to the device that uses a UFPT representing your FPM application.

If you are running your LONWORKS network in LNS mode (LNS Auto or LNS Manual) and you plan
on using LONWORKS connections to bind the data points in your FPM application with the data points
on the internal SmartServer device, on another FPM device, or on the external devices connected to the
SmartServer, you must first commission your FPM device. You can commission your FPM device
with the SmartServer or with an LNS application such as the LonMaker tool.

You can test that the FPM application is functioning properly by adding the data points declared in the
FPM device to the View — Data Points Web page. You can then change the values of the input data
points and observe whether the output data points are updated accordingly. Note that if FPM
programmability is not licensed on the SmartServer, the SmartServer will not process changes made to
the FPM data points, and the FPM data points will become unavailable in the View — Data Points
Web page.

Once you verify that the FPM application is working, you can connect the data points in your FPM
application with LONWORKS connections or Web connections. You can then use the View — Data
Points Web page, a custom FPM configuration Web page, or an LNS application such as the
LonMaker tool to test that the connections are updating the FPM data points accordingly.

After you have deployed FPM applications on a development SmartServer, you can deploy the FPM
applications you have developed on multiple SmartServers.

Notes:

e The full version of the i.LON SmartServer Programming Tools must be installed on your
computer to upload an FPM to a SmartServer. The full version of the i.LON SmartServer
Programming Tools is included on the i.LON SmartServer Programming Tools DVD. To order
the i.LON SmartServer Programming Tools DVD, contact your Echelon sales representative.

e An FPM programming license must be installed on your SmartServer in order for an FPM to
function on the SmartServer. If FPM Programmability is not licensed on a SmartServer, the

Deploying Freely Programmable Modules on a SmartServer

SmartServer will not process the tasks defined in the FPM application. To order an FPM
programming license for your SmartServer, go to the i. LON SmartServer Web site at
www.echelon.com/ilon.

e The device interface (XIF) file that you created for your FPM must be in the
root/lonworks/import/<YourCompany>on the SmartServer flash disk. Otherwise, you will not be
able to create FPM devices on that SmartServer that uses a static interface. In addition, the XIF
file must be in the lonworks/import/<YourCompany> folder on your computer. See Chapter 4,
Creating FPM Device Interface (XIF) Files, for more information on how to create a XIF for your
FPM and copy it from the on your computer to a SmartServer.

Uploading FPM Applications and Drivers

You can upload FPMs to SmartServers that have an FPM programming license installed on them. To
do this, you use the i.LON SmartServer Programming Tool or an FTP client such as Internet Explorer
7 to transfer the FPM executable module (.app extension) to the root/modules/User/<YourCompany>
folder of each SmartServer on which the FPM is to be used.

Typically, if you are deploying your FPM on a development SmartServer you will use the i. LON
SmartServer Programming Tool to transfer the FPM module. If you are deploying your FPM on
multiple SmartServers in the field, you will use an FTP client because you also need to transfer
resource files, device interface (XIF) files (if the FPM uses static functional blocks, and custom FPM
configuration Web pages (if created). For more information on uploading the FPM executable module
(.app extension) and other required files to multiple SmartServers via FTP, see Deploying FPMs on
Multiple SmartServers later in this chapter.

Note: As of release 4.01 of the i.LON SmartServer Programming Tool, you do not need to reboot your
SmartServer to initialize your FPM application. Once a new or updated FPM has been uploaded to the
SmartServer, it is automatically initialized, and it will execute its algorithms upon data point updates.

To upload an FPM application to a SmartServer with the i. LON SmartServer Programming Tool,
follow these steps:

1. Create a User/<YourCompany> folder under the root/modules folder on the SmartServer flash disk
if one does not already exist. This is where the executable module generated by the i.LON
SmartServer Programming Tool should be stored.

2. Start the i.LON SmartServer Programming Tool if it is not already running. To do this, click
Start, point to Programs, point to Echelon i.LON SmartServer Programming Tools, and then
click i.LON SmartServer Programming Tools. The i.LON SmartServer Programming Tool
opens.

3. Inthe C/C++ Projects view, expand the Release folder, right-click the <company program
ID>.UFPT<FPM name>.app file and then click Transfer to i.LON SmartServer in the shortcut
menu.

i.LON SmartServer Freely Programmable Module User’'s Guide 97

http://www.echelon.com/ilon

98

& CIC++ - UFPTHVACCo

ller.cpp - Eclipse SDK

2% SFFD3E0000000400[S] UFPTHYACController ~ FrEETRE R E AT
& tncludes
= [= Release * Copyright
[ctdec *
() * This file

File Edit Refactor Mavigate Search Project FPM Run Window Help

- - o 5 . = .

L3~ =2 R - A AGIC- R C RS -S> Rl N SRRt & 2| B o | ?
Mavigatar & = &7 T 7 B g urPTHYACController.cpp 2 =g

R A R R R R R A
() 2006,2007 Echelon Corporation. A1l rights reserved —

iz Example Software as defined in the Software

ctdt.o - [mipsbe] » jgreement that governs its use.
[orh UFPTHYACCONtroller_Utils, o - [mipshe]
@ UFPTHYACController.o - [mipsbe] Open LKES NO REFRESENTATION, WARRANTY, OR CONDITICH OF
2] UPPTHYACControlier d Open Wit Y| ExPRESS, IMFLIED, STATUTORY, OR OTHERVWISE OR IN
UFPTHYACController dUFPTHWACCONTIONE. povie gl Configuration y MICATICN VITH YOU, INCLUDING, BUT NOT LIMITED TO,
5/ UFPTHYAC Controller_Utils.d ED WARRANTIES OF MERCHANTAEILITY, SATISFACTORT
LFPTHYACCantroller_Utils dUFPTHACContr [Copy FITHESS FOR ANY PARTICULLR PURPOSE,
5] ctat.dotdt.o T Paste GEMENT, IND THEIR EQUIVALENTS.
[& maksfile 3 Delets
< Move B L L R L T S T
LonMark Resource Yiew &2 Rename T —
‘4; . g Import. .. dependent includes
Server/IP-Address: 24 Expart... er/yourcompany/ fpm deve lopment . h"
e OFFD3EO0O0000400_5 :
@ froctflonworksitypesfuserjechelon/diDl: & Refresh devendent includes L/
@ jrootlonworksitypesjuserfechelon(d0S 4 pockark. k3
@ irootlonworksitypesjuserischelonfechel e — =0
@ iractflonworksitypesfuseriachslonfisilon 5 er...
@ froatilonworks{types/userjechelonmbus [gj Remave from i.LOMN SmartServer. . d
@ frootflonworks typesuser fecheloniminiki Run &s »
=@ froctflonworksitypes/userfyourcompany by as v
2 Configuration Property Types
=3 Functional Profile Templates
& L5 #9FFDIE0000000400[S].UFRTH K
(5 #9FFDAEOOOOI00MOOSIUFETE oo
S #oFFDAEOO0ODDOACO[S] UFFTY COTPAre With '
5§ #OFFD3E0000000400[S]UFPTE PEplace With 4
55 #0FFD3E0O00000400(S]UFPTY propertiss
= B >
g JSFFDIEN000000400[5).UFPTHYACConkraller/Release (4 9FFDIENND0000400[5] UFPTHYACContraller. app

The Install FPM Module dialog opens with the Deployment Settings window.

X]

& Install FPM Module [#9FFD3E0000000400[5].UFPTHVACControlle

Deployment Settings

Specify remote site server address, logon information, destination folder.

FTP settings:

Host: | ho.z.124.82 | Ftp Port:
User: | ilon |
Password: | R |

Destination Dir: | Jmodulesfuser fyourcompany: |

IF wou can connect ko the i LOM SmartServer but vou have difficulties
to setup a file transfer, vou should enable passive mode,

O

Passive Mode:

O

Reboot:

Web Port:

Create default Configuration web-page:
fwebjconfig)Fby9FFDEEQOO0000400[5]. UFPTHYAC Conktroller, htm

Default web-page: []

Mext =] I Firish] [Zancel

Enter the following properties:

Deploying Freely Programmable Modules on a SmartServer

FTP Settings

Host

FTP Port

User

Password

Destination
Directory

Passive Mode

Reboot

Web Port

Default Web Page

Enter the IP address or hostname of the SmartServer to which the FPM is
to be uploaded. The default is the IP address or hostname entered in the
LonMark Resource View.

Enter the port the SmartServer uses for FTP communication. The default
FTP port is 21.

Enter the user name to log in to the SmartServer. The default user name is
ilon.

Enter the password to log in to the SmartServer. The default password is
ilon.

Enter the location on the SmartServer flash disk where the FPM
application is to be stored. By default, the FPM application is stored in
the root/modules folder on the SmartServer flash disk. You should create
a User/<YourCompany> directory under the root/modules folder to store
your FPMs.

Select this check box only if an FTP connection cannot be made. This
enables your computer to initiate the connection with the SmartServer
FTP server. The FTP server will listen and wait for the connection, rather
than initiate it, upon receipt of a transfer command. This option is useful
if your computer is behind a firewall that blocks the connection initiated
by the FTP server (the firewall may see the connection request as an
attack) while in active mode. This check box is cleared by default.

Select this check box to reboot the SmartServer after the FPM application
has been uploaded to it. This check box is cleared by default.

The port your SmartServer uses to serve HTTP requests (SOAP and
WebDAV). The default value is 80, but you may change it to any valid
port number. Contact your IS department to ensure your firewall is
configured to allow access to the server on this port.

Creates a default configuration Web page for your FPM application in the
root/web/config/FB folder on the SmartServer flash disk. You can then
use Adobe Contribute CS3 and the i.LON Vision software to customize
this FPM configuration Web page by adding i.LON Vision objects to it.

Once you publish the FPM configuration Web page, you can click the
General button above the navigation pane on the left side of the
SmartServer Web interface, click the functional block representing your
FPM application, and use the configuration Web page to read and write
values to the data points in your FPM application.

See Creating FPM Configuration Web Pages in this chapter for more
information.

Click Next to open the Summary window, or click Finish to begin uploading your FPM to your
SmartServer and skip to step 7.

i.LON SmartServer Freely Programmable Module User’'s Guide 99

100

10.

€ Install FPM Module [#9FFD3E0000000400[5].UFPTHVACController.app | [X]

Summary

The Following activities will be executed,

- transfer file '#9FFD3E0000000400[5], UFPTHYAC Controller, app' o iLon SmartServer @ '10.2. 124,82
target directory: 'fmodulesfuservourcompany’

- any existing file with name '#9FFD3E0000000400[5], UFPTHYAC Controller, app’ will be deleted

- create default Configuration web-page.

location: fweb/config/Fb/9FFD3EQOOO000400[S].UFPTHYAC Controller, hitm

- reload module "SFFD3EOOD0000400[S]. UFPTHYAC Controller'

[Finish H Cancel]

This window lists the tasks to be performed, which consists of uploading the FPM to the
root/modules directory on the SmartServer flash disk, deleting any existing module with the same
name of the FPM being uploaded, optionally rebooting the SmartServer if you selected the Reboot
check box in the Deployment Settings window in step 4, and optionally creating a default
configuration Web page if you selected the Default Web Page check box. Click Finish.

If you selected the Reboot check box in the Deployment Settings window in step 4, the Reboot
iLON SmartServer dialog opens and prompts you to confirm that the SmartServer selected in the
Deployment Settings window in step 4 is to be rebooted.

& Reboot iLON SmartServer @ 10.2.124.111

& Dovyou really wank ko rebook iLOMN SmarkServer on 10,2, 1241117
_ﬁ
Yes l [Mo
Click Yes.

The FPM executable module (.app extension) is uploaded to your SmartServer. You can use the
console port to verify that the FPM is being uploaded to your SmartServer. If you are updating an
existing FPM application on your SmartServer, the current module is stopped and unloaded, and
the updated module is then loaded and initialized.

If FPM Programmability is not licensed on your SmartServer, the following urgent messages will
appear when you reboot your SmartServer and the SmartServer is attempting to load and start its

embedded applications:

Deploying Freely Programmable Modules on a SmartServer

11.

[STARTING] "#3000010000000000[31 . UFPTHYACController™

«Urgent= FPM license key is invalid: file EchelonlFPMLic.xml

=Urgent= FPM feature is not properly licensed: file EchelonlFPMLic.xml
E?iéﬁdwhile starting FPM UFPTHVYACController: Can't create FPM-task.

=Urgent* [FP1<?7-01E35>Fatal error occured while initializing!

=Urgent= [FP1<?7-01E39>FPM-'#H8000010000000000[3]1.UFPTHVYACController’ :Can’t crea
te FPM-task. |

To order an FPM programming license for your SmartServer, go to the i. LON SmartServer Web
site at www.echelon.com/ilon.

Once the FPM has been uploaded to the SmartServer, the FPM application is automatically
initialized.

Selecting a Network Management Service

Before you create your FPM devices on the SmartServer, you need to verify that you have selected a
network management service mode (LNS or Standalone) for running your LONWORKS network.

In LNS mode (LNS Auto or LNS Manual), the SmartServer transmits network messages to
devices through an LNS server, and the SmartServer and the devices connected to it communicate
in a peer-to-peer manner. You must use LNS mode if you plan on using LONWORKS connections
to bind the data points in your FPM application to other data points. You cannot use LNS mode if
your FPM uses a dynamic interface.

In Standalone mode, the SmartServer is the network manager. It directly transmits all network
messages to the devices connected to it, and the network functions as a master-slave system,
where the SmartServer is the master to the slave devices. You can use standalone mode to operate
a small, single-channel network that does not require LNS services, LONWORKS connections, or
connections to other network management tools. Networks running in standalone mode are
limited to a maximum of 200 devices (for FT-10 networks, you need to attach a physical layer
repeater to the network to exceed the 64-device limit posed by the physical channel). FPM
devices can use static or dynamic interfaces when the network is running in Standalone mode.

Using LNS Network Management Services

To configure the SmartServer to use LNS network management services for managing a LONWORKS
NETWORK, follow these steps:

1.

Install the Echelon i.LON Enterprise Services on an LNS Server (running LNS Turbo Server
[version 3.2] or newer) from the i. LON SmartServer DVD or the i.LON SmartServer
Programming Tools DVD. To do this, follow these steps:

a. Insert the i.LON SmartServer DVD or the i.LON SmartServer Programming Tools DVD into
your computer. If the installation program fails to start, navigate to your DVD-ROM drive
and run setup.exe.

b. Install the Echelon i.LON Enterprise Services. To do this, click Install Products, click
Echelon i.LON Enterprise Services, and then follow the instructions in the Setup Wizard.
Make sure you change the default user name and password to protect the LNS network
databases on your LNS Server.

Add an LNS Server to the LAN following these steps:

a. Right-click the LAN icon or a dial-out connection icon, point to Add Host, and then click
Server (LNS, E-mail, Time, IP 852 Config, WebTarget) on the shortcut menu, or if are you
adding the time service to an existing server on the LAN, skip to step 4.

i.LON SmartServer Freely Programmable Module User’s Guide 101

http://www.echelon.com/ilon

Navigate
*) General O Driver

3 gfz LA
= &| Add Host B | &4 Server (LNS, Email, Time, IP-852, WebTarget)

X REmore ACT .
[»5e Mot & 1.LON SmartServer

2 my mailserver.my_domain.com

b. The Setup — Host Web page opens, and a server icon is added one level below the LAN icon
at the bottom of the navigation pane or one level below the dial-out connection icon.

c. Enter the IP address or hostname of the LNS Server and then click LNS Proxy. The server
icon on the tree becomes an LNS Server icon and the Setup — LNS Server Web page opens.

Setup - LNS Server

Navigate

IP or Hostname
® General O Driver ™ |1g_2_124_77|
Flgfe LAN
= & SmartServer B @ LNS Proxy O Host

T Remote Access
s Net

2 my mailserver.my Host Property value
%710'2'120'3 SOAP Path |ansPr0xyILnsPr0xyService
E! 10.2.124.77 I;!II'P Port (Web Server / SOAP) '80—
SOAP User Name * |i|gn
SOAP Password *

Format values in WebBinder

S e e Data Point Format hd

[For i LON SmartServer Destination Servers, S0AF A icati may be i in the dat file
[~ Reboot required if changed

d. Optionally, you can configure the LNS Server properties (if you want to change the HTTP
port, user name, or password used by the SmartServer to access the LNS Proxy Web service).
See Chapter 3 of the i.LON SmartServer User’s Guide for more information on setting these
properties.

e. Click Submit to save the changes.

3. Enable your Web browser to access the LNS Proxy Web service on the LNS Server computer. To
do this, follow these steps:

a. Add the location of the LNS Server on which the LNS Proxy Web service is installed as a
trusted site. To do this with Internet Explorer 7, click Tools, click Internet Options, click
the Security tab, click Trusted Sites, click Sites, and then enter the following:

<LNS Server>:<port number>/LnsProxy/LNSProxyService

For example, if the IP address of your LNS Server is 10.2.100.30 and the HTTP port is 80,
enter 10.2.100.31:80/LnsProxy/LnsProxyService

Click Add, click Close, and then click OK.

b. Enable your Web browser to access sites over other domains. To do this with Internet
Explorer 7, click Tools, click Internet Options, click the Security tab, and then click
Custom. Under the Miscellaneous category, select Enable or Prompt for the Access data
sources across domains property.

Note: If you do not complete step 3, the Cannot Access Remote Host dialog appears when you
try to create a new LNS network database or synchronize the network attached to your
SmartServer to an existing LNS network in step 4.

102 Deploying Freely Programmable Modules on a SmartServer

4. Create a new LNS network database or synchronize the network attached to your SmartServer to
an existing LNS network database. To do this, follow these steps:

a. Click the Driver button located directly above the navigation pane.

b. Click the Net network icon in the SmartServer tree. The Setup - LON Network Driver Web

page opens.

Setup - LON Network Driver

Navigate

O General & Driver
B gl LAN
=l &= SmartServer

T Remote Access

3 Net
[¥ VirtCh

FH= LON

[+ == | ON [P
= & my mailserver.my domain.com
B (& 10.2.124.77

=& g Name:

e
Description:

L=

Lon Network Property

Icon

Hidden

Network Management
Service

MNetwork Management Mode
LNS Server
LNS Network

[use LNS Network
Interface

Domain Length (bytes)

[S T

Net

Value
fiLonNs
|

O standalone O/ LNS Auto &) LNS Manual

@ onhet O Offiet

——

c. Inthe Network Management Service property, click LNS Auto or LNS Manual:

e Select LNS Auto to have the SmartServer automatically synchronize with the selected
LNS network database via the LNS Proxy Web service (you can also manually initiate
synchronization by pressing the Synchronize button in the LNS Network property). In
this mode, the SmartServer independently initiates communication with the LNS Proxy
Web service. You should select this mode as long as a firewall is not blocking the
SmartServer’s access to the port on the LNS Server computer selected for the LNS Proxy

Web service (port 80 by default).

e Select LNS Manual to have the SmartServer manually synchronize with the selected
LNS network database via the LNS Proxy Web service. In this mode, you can
synchronize the SmartServer with the selected LNS network database by pressing the
Synchronize button in the LNS Network property. This mode does not require the
SmartServer to access to the LNS Proxy Web service port on the LNS Server computer.
You should only select this mode if a firewall is blocking the SmartServer’s access to the
LNS Proxy Web service port on the LNS Server computer (port 80 by default). This is

the default.

d. Inthe LNS Server property, select the IP address of the LNS server to be used for providing
network management services. This LNS Server will be used to store a new LNS network
database or contains the existing target LNS network database. The Connect To

<SmartServer IP Address>dialog opens.

i.LON SmartServer Freely Programmable Module User’s Guide

103

Connect to 10.2.124. 77

The server 10.2.124.77 at iLON SmartServer Enterprise
Services requires a username and password,

Warning: This server is reguesking that vour username and
passward be sent in an insecure manner (basic authentication
without & secure connection).

User name: |ﬂ ilan v|
Passward: | o |

Remember iy passwaord

[Ok H Cancel]

e. Enter your login information for accessing the LNS Server via the LNS Proxy Web service
and then click OK. The default user name and password is ilon, but you should have entered
a different user name/password in the Echelon i.LON Enterprise Services installer.

f. The box in the LNS Network property is highlighted red and a dialog appears prompting you
to confirm the creation of a LNS network database for the default Net network.

mr e X
é i ’m—
= sl
b o4& Create LNS DB?
=& L =]
=
=3
oL 5 ;
o The Metwork "Net™ does not exist on LNS. Do you
- want to create it?
2
E'—’e [OK][Cancel]

—

e To create a new LNS network database named “Net” in the ilON/db folder on your
computer, click OK. Click Submit. The network in the SmartServer tree is
automatically synchronized to the new LNS network database.

e To select an existing LNS network database, or create a new LNS network database with
a different name (14 characters or less), click Cancel, select an existing LNS network
database or enter an LNS network database name that is unique to the selected LNS
Server (the box in the LNS Network property will be highlighted red), and then click
Submit.

g. The name of the network changes to the name entered in the LNS Network box in step e. If
you selected an existing LNS network database on your computer, the network icon also
changes to an LNS server icon.

104 Deploying Freely Programmable Modules on a SmartServer

h. Select the Use LNS Network Interface check box to specify that the SmartServer is attached
to the network, and then select a network interface to be used for communication between the
LNS Server and the physical network.

If you select this check box, the Network Management Mode property is set to OnNet. This
means that network changes are propagated to the network immediately. Click OffNet to
store network changes in the selected LNS network database and propagate them to the
network when you place the SmartServer OnNet.

i. Click Submit. If you selected LNS Auto in step c, the SmartServer automatically begins
synchronization with the selected LNS network database. If an item is highlighted yellow, it
means that it is not yet synchronized with the selected LNS network database. An item is
clear when it is has been synchronized.

Setup - LON Network Driver
Navigate _) Name: HVAC Network Ha
O General @ Driver
EIQTQE.N 6’ " Description:
= & SmartServer -

T Remote Access
B) HVAC Network

E% Lon Network Property Value
T iLON App (Internal) Icon [Lns (v
@ LNS Network Interface (Inte Hidden O
- LON [P
2 my_mailserver.my_domain.com =TS (e O standalone @ (NS Auto O LNS Manual

=
& 10.2.124.77 enviee

Network Management Mode (%) onNet () OffNet

LNS Server 10.2.124.77 [v]

s newerk FAC R 8 e
Use LNS Network X Default SmartServer E]

Interface

Domain Length (bytes)

Note: If IP-852 routing is activated on your SmartServer and you open the LNS network
database with the LonMaker tool, you will observe that the LonMaker drawing includes
additional LON IP channel, router, and i.LON Network Interface (i.LON NI) shapes. You can
delete the LON IP channel and router shapes to simplify your drawing. If you delete these
shapes, the corresponding items in the SmartServer tree are hidden. Do not delete the i. LON
NI shape.

5. Ifyou selected LNS Auto in step 4 and items in the SmartServer tree are still highlighted yellow
or you selected LNS Manual, you can manually resynchronize the SmartServer to the LNS
network database. To do this, follow these steps:

a. Inthe LNS Network property, click the Synchronize button. The SmartServer Resync
dialog opens.

i.LON SmartServer Freely Programmable Module User’s Guide 105

106

@ SmartServer Resync

Delete application instances that are not
[[] defined in network management tools lke
LonMaker?

Synchronize all (by default only objects
changed on i.LON are synced)

ltems to be synced:

[Close i Start |
A
b. Set the following synchronization options:
Delete Application Instances Removes all functional blocks on the SmartServer that
Not Defined in Network do not have a corresponding functional block shape in
Management Tools the LonMaker network drawing and deletes their

configurations. This option is cleared by default.

Synchronize All Transmits changes made to the objects in the
SmartServer tree by the SmartServer to the LNS
network database, and updates the SmartServer tree
with changes made to the network database by other
LNS applications such as the LonMaker tool.

By default, this option is cleared. This means that
changes made by the SmartServer to the objects in the
SmartServer tree are transmitted to the LNS network
database. Changes made by other LNS network
management tools are not transmitted back to the
SmartServer.

Click Start.

d. The Items to be Synced property lists the number of objects in the SmartServer tree to be
updated. This number counts down as the synchronization operation progresses. When the
synchronization operation has been completed, this number is 0, and you can then click Close
to return to the SmartServer Web interface. During the synchronization, this dialog displays
any errors that occur.

Note: You can cancel the synchronization operation anytime by clicking Close and the
clicking Yes in the confirmation dialog.

Using Standalone Network Management

To manage a LONWORKS network using the SmartServer as a standalone network manager, follow
these steps.

1.
2.

Click the Driver button located directly above the navigation pane.

Click the network icon in the SmartServer tree. The Setup - LON Network Driver Web page
opens.

Deploying Freely Programmable Modules on a SmartServer

3. Inthe Network Management Service property, select Standalone.

Setup - LON Network Driver

Navigate = 3) g

Name: Net
O General ® Driver

= =

B ek LaN

El & SmartServer e
T Remote Access ®
[2 Net

2 my mailserver.my domain.com

Description:

Lon Network Property Value

Icon |ILDHNS E]

Hidden |
Nets kM t
Szrv\:ic;re anagemen (® standalone O LNS Auto O LNS Manual

Network Management Mode (&) onnet O Offiet

LNS Server

LNS Network |

Use LNS Network
Interface

Domain Length (bytes) b E]
oo T AL NonnDa D AANAAD

4. Click Submit. A dialog appears informing you that the SmartServer is being switched to
standalone mode. It takes approximately 1 minute to switch. When the SmartServer has finished
switching to standalone mode, the dialog closes and you can begin using your SmartServer.

o® Q9
gg Switching to Standalone

L=

The i.LON SmartServer is now being switched to
standalone mode. This can take several minutes, please
be patient.

A

See Chapter 5 of the i.LON SmartServer User’s Guide for how to switch the SmartServer from
Standalone to LNS mode and synchronize the network attached to the SmartServer to an LNS network
database.

If you are using the SmartServer in Standalone mode and your internal FPM devices are using the v40
XIF (your FPM devices have dynamic functional blocks), you should not switch to LNS mode and
select an existing LNS network database to be synchronized with your SmartServer. Dynamic
functional blocks are not supported in LNS; therefore, the synchronization process may corrupt your
LNS network database.

Adding FPM Devices to the SmartServer

You can add devices representing your FPM applications to the SmartServer. To do this, you add a
new internal device to a LONWORKS channel in the SmartServer tree that uses a static or dynamic
interface. If you are integrating your FPM application with another LNS application such as the
LonMaker tool, the internal FPM device must use a static interface. If you are running your network
with the SmartServer operating as a standalone network manager, the internal device can use a static or
dynamic interface.

Note: You cannot use the LNS tree to add an internal FPM device.

i.LON SmartServer Freely Programmable Module User’s Guide 107

Using a Static Device Interface

If you are integrating your FPM application with another LNS application such as the LonMaker tool,
the internal FPM device must use a static interface. To use a static interface for your FPM, you select
a device interface (XIF) file from the root/lonworks/import/<YourCompany> folder on the
SmartServer flash disk. This is the XIF file that you generated for your FPM with the i. LON
LonWorks Interface Developer tool (see Chapter 4 for more information on creating XIF files for
FPMs).

To add an FPM device that uses a static interface to a SmartServer, follow these steps:

1. Ifyou are integrating your FPM with an LNS application such as the LonMaker tool, verify that
you have completed the following steps:

a. Installed the Echelon i.LON Enterprise Services on the i. LON SmartServer DVD or the
i.LON SmartServer Programming Tools DVD.

b. Added an LNS Server to the LAN.

c. Configured the SmartServer to use LNS network management services (LNS Auto or LNS
Manual) and synchronized the SmartServer to an LNS network database.

See Using LNS Network Management Services earlier in this chapter for how to do complete these
steps.

2. Expand the network icon in the SmartServer tree, right-click a LONWORKS channel, and then
select Add Device on the shortcut menu.

Select Channels

@ General O Driver
Hl gl LAN
=l &= SmartServer
T Remote Access
=l (@) HVAC Metwork
= ¥ VirtCh
== Channel 1
El EJ ILON Ap Properties
& (] Node
(2] Digit: pelete
= (A] Digitz
E] Digitz Fename
(4] Digitz
Real |
@ LNS Net Add Router e (Inte
H 2 my_mailserver.my_domain.com
[+ & SmartServer
H (& 10.2.124.77

Add Device

3. The Create Device dialog opens.

108 Deploying Freely Programmable Modules on a SmartServer

Add Device

Property Value

Name Net/LON/|
File Name

Location () External) Internal

@ LonMark (XIF)
Template

Select

[oK][Cancel]

4. In the Name property, enter a meaningful name for the device.

5. In the Location property, select Internal.

6. Expand the LonMark (XIF) folder, expand the root/lonworks/import/<YourCompany> folder,
and then select the XIF created for your FPM application.

e

:‘; f Add Device

Property WValue

Name Net/Lon/|HVAC FPM Device
File Name /(root/lonWorks/Import/YourCompany/HVAC.xif

Location O external @& Internal

= @ LonMark (XIF)
[froot/lonWorks/Import/Echelon/iLON 100/
=1 ! frootflonWorks/Import/YourCompany/
Select DigitalEncoder
HVAC
[# math
Template

[OK][Cancel]

F |

7. Click OK. An internal device representing your FPM application is added to the bottom of the
LON channel tree.

8. Click Submit. You must wait approximately 15 seconds for the SmartServer to instantiate the
XIF file used for the internal device. Once the XIF has been instantiated, you can expand the
FPM device and its functional block to show the data points in the FPM application.

Note: The FPM device will be highlighted orange in the SmartServer tree, indicating that it not
commissioned. If you are running your LONWORKS network in LNS mode (LNS Auto or LNS

i.LON SmartServer Freely Programmable Module User’s Guide 109

Manual) and you plan on using LONWORKS connections to bind the data points in your FPM
application, you must first commission your FPM device. See Commissioning FPM Devices later
in this chapter for more information on how to do this. You do not need to commission the FPM
device in order for it to run its application.

Select Networks
* General O Driver

= gls LAN
El &=/ SmartServer
T Remote Access
= 1w HVAC Network
= ¥ VirtCh
E = Channel 1
ILON App (Internal)
LNS Metwork Interface (11
=l & HVAC FPM Device (Intern
= (] HVAC Function[0]
nviHVACMode 1
: nviSetPoint 1
= nviTemp 1
I® nvoAC oOnoff 1
® nvoFurnace OnoOff
= nciHeartbeat 1
= ncioffline 1
= nciThrottle 1

Using a Dynamic Device Interface

If you are running your network with the SmartServer operating as a standalone network manager, the
internal device can use a static or dynamic interface. To use a dynamic interface, you select the
SmartServer’s v40 XIF from the root/lonworks/import/Echelon/iLON100 folder, and you then add a
dynamic functional block to the device that uses a UFPT representing your FPM application.

To add an FPM device that uses a dynamic interface to a SmartServer, follow these steps:

1. Add anew internal device to a LONWORKS channel following steps 2—5 in the previous section,
Using a Dynamic Device Interface.

2. Expand the LonMark (XIF) folder, expand the root/lonworks/import/Echelon/iLON100 folder,
and then select the appropriate v40 XIF for your SmartServer (the ILON_FTT_V40 XIF if you
have the FTT model of the SmartServer; the ILON_PLC_V40 XIF if you have the PL model).

110 Deploying Freely Programmable Modules on a SmartServer

21X

-

P

a { Add Device

Property WValue
Mame NethDN,’|HVAC FPM

File Name froot/lonWorks/Import/Echelon/ILON100/ILONIOO_FTT_W40.XIF

Location () External & Internal

= @ LonMark (XIF) ~
B Jfroot/lonWorks/Import/EchelonfiLON 1(
FZ: ILON100_FTT V12
ILON100 FTT V40
[¢ nLon1o0_PLC_vi2
[¢ 1Lon100_PLC_va0 ¥,

Select

[oK][Cancel]

A
3. Click OK. A new device with the name you specified is added to the tree under the LON channel.

4. Click Submit. You must wait approximately 15 seconds for the SmartServer to instantiate the
v40 XIF file used for the internal device before you can add an FPM functional block to the device
as described in the following steps.

5. Verify that your company’s updated resource file set, which should include the UFPTs on which
your FPMs are based, is installed in the root/lonworks/types folder on the SmartServer flash disk.
If your updated resource file set is not on a SmartServer, you will not be able to create FPM
functional blocks on that SmartServer. See Chapter 3, Creating FPM Templates, for more
information on how to generate your company’s resource file set and copy it to a SmartServer.

6. Right-click the internal FPM device you created, and then select Add Functional Block on the
shortcut menu.

Select Devices

& General O Driver
Hl gfs LAN
= & SmartServer
T Remote Access
B2 Net
&€ LON
ﬂ ILON App (Internal)
@ RNI (Internal)
</ HVAC FPM (Internal)
H 4 LtaNI (Internal) Properties
[+ 2% VirtCh
S my mailserver.my domain. Delete
[(& 10.2.120.18

Rename
Save as Template

Change Channel p
Add Functional Block

Manage p

i.LON SmartServer Freely Programmable Module User’s Guide 111

112

7. The Add Functional Block dialog opens.

7
Add Functional Block
1
Property Value
Name Net/LON/HWVAC FPI'“'I.-""
Type VirtualFunctionBlock
@ static
Select @ pynamic
[OK Cancel]
F |

8. In the Name property, enter a name for the functional block that summarizes the functionality of

the FPM.

9. In the Select property, expand the Dynamic folder, expand the folder in the
root/lonworks/types/user directory containing your company’s resource file set, expand your
company’s resource file set to show the available UFPTs, and then select the UFPT representing
the FPM application (<company program ID>UFPT<FPM Name>).

Add Functional Block

Property Value

Name Net/LON/HVAC FPM/HVAC Function|

Type #9FFD3E0000000400[5].UFPTHVACController
@ static
= @ Dynamic

= frootflonworks/types/user/yourcompany/
=] |_0‘ fom development
#OFFD3EQQDO000400[51.UFPTHVAC Controller
Select #OFFD3EQ0D0000400[5].UFPTMath
@ #9FFD3E0000000400[5].UFPTMathAdd
@ #OFFD3EQQD0000400[5].UFPTMathSubtract
@ #9FFD3E0000000400[5].UFPTSwitchEncoder
froot/lonworks/types/
Jfroot/lonworks/types/user/echelon/

[OK][Cancel]

10. Click OK.

11. Click Submit. A functional block representing the FPM application and all of the data points
declared in the FPM application are added to the tree under the internal device.

Deploying Freely Programmable Modules on a SmartServer

MNavigate

General O Driver
E gls LAN
= == SmartServer
T Remote Access
SE A E
=== LON
i3 iLON App (Internal)
@ RNI (Internal)
=l &/ HVAC FPM (Internal)
Node Object
% VirtFb
= [J HvAC Function
nviSetPoint
nviTemp
h nvoStatus
= nvochiller OnOff
[nvoHeater OnOff
| nviEnable
M| nviHysteresis

Note: The FPM device will be highlighted orange in the SmartServer tree, indicating that it not
commissioned; however, you do not need to commission the FPM device in order for it to run its
application.

i.LON SmartServer Freely Programmable Module User’s Guide 113

Commissioning FPM Devices

If you are running your LONWORKS network in LNS mode (LNS Auto or LNS Manual) and you plan
on using LONWORKS connections to bind the data points in your FPM application with the data points
on the internal SmartServer device, on another FPM device, or on the external devices connected to the
SmartServer, you must first commission your FPM device. You can commission your FPM device
using the SmartServer tree or LNS tree in the SmartServer Web interface, or using an LNS application
such as the LonMaker tool.

Once your FPM device is commissioned in the LonMaker tool, you cannot use the SmartServer to
change the Commission Status or Application Status of the device. You can only use the LonMaker
tool to decommission and re-commission the device, and to set the device application online or offline.

Commissioning FPM Devices with the SmartServer

To commission your FPM device with the SmartServer tree or LNS tree in the SmartServer Web
interface, follow these steps:

1. Click Driver above the navigation pane in the left side of the SmartServer Web interface.

2. Expand the LNS Server (if in the LNS tree), network, and channel containing the FPM device to
be commissioned, and then click the FPM device. The Setup — LON Device Driver Web page
opens.

3. Select the Smart Network Management check box in the Smart Network Management column
header.

Setup - LON Device Driver

Select LON Devices oay, .
o ® nne, Name: HVAC Network/Channel 1/HVAC FPM Device Handle: 16
General Driver
F ~
ngE‘N w Description:
&9 SmartServer
T Remote Access
Bl () HVAC Network
& Virtch Lon Device Property Value
E1=< Channel 1
iLON App (Internal) Icon ‘App E]
LNS Network Interface (It Hidd 0O
I en,
= &/ HVAC FPM Device (Intern
B[] HYAC Function[0] [¥[Smart
QviHVACMode 1 Network Progress Identification Property Vvalue
:anethnt 1 s
| nvitemp 1 Neuron 1D |
I;WOH Requested Program ID [57d320000000400
nvoFurnace On
‘ nciHeartbeat 1 Maximum Number of Dynamic Functional Blocks 0
1 %1 Maximum MNumber of Dynamic Data Points 1]

4. Click Submit. The FPM device is commissioned and its corresponding icon in the SmartServer
tree should be clear.

Commissioning FPM Devices with the LonMaker Tool
To commission your FPM device with the LonMaker tool, follow these steps:

1. Inthe LonMaker tool, right-click the FPM device, point to Commissioning, and then click
Commission in the shortcut menu.

Deploying Freely Programmable Modules on a SmartServer

Browse,

Commi

Configure. .. Decommission...
Delete Load. ..
. . G0 ko Functional Block. .. Propagate CP Values ko Device, .,
Manage. .. Replace...
Move Device 4 Resync CPs...
i »
LON Plug-ins
Properties...
ILON App " Copy
3 Duplicate

HVAC FPM Devica

ILONNI

Follow the instructions in the Commission Device Wizard and then click Finish. See the

LonMaker User’s Guide for more information on using this wizard.

3. When the LonMaker tool is done commissioning the FPM device, the FPM device shape will be
solid green (online) or crosshatched green (soft offline), indicating that the FPM device has been
commissioned. In addition, the FPM device should be clear in the SmartServer tree.

Recommissioning FPM Devices

If you decommission the FPM device, you can re-commission it with the LonMaker tool and the
SmartServer Web interface following these steps:

1. In the LonMaker tool, right-click the FPM device, point to Commissioning, and then click

Commission in the shortcut menu.

2. Follow the instructions in the Commission Device Wizard and then click Finish.
3. When the service pin dialog opens, right-click the FPM device in the SmartServer tree in the
navigation pane on the left side of the SmartServer Web interface, point to Manage, and the click
Send Service Pin Message on the shortcut menu.
1.LON SmartServer voveseosy = ECHELON
Send Service Pin Message
SETUP 5 HELP LOG OFF
Replace
Setup - LON Devid commission
Decommission
|
Set Online
Select LON Devices | Set Offline [tion |
O General @ Driver
Eg?g AN Properties Fetch Program ID |800500000000 HEX
BT 5 belete Download Image (Domain.Subnet.Node) 37.1.16
'7:7' Remote Access Activate Template lss (Domain.Subnet.Node) .0.0
[- EPM Test 2x Rename .
== LON Download CP-File r of Simultaneous Transactions 0
Save as Template
RNI (Internal) Query Status of Transactions 0 Milliseconds
HVAC FPM (Internal) | Change Channel » | Stat
= By Router (Internal) Eleat 3t s Uncommissioned E]
<] HVAC Device & (Inter| Add Functional Block | wink — -
B iLON App (Internal) Reset Application Stopped (Offline) E]
< HVAC FPM Device (In Ma”agE‘: B |
¥ VirtCh
= & my mailserver.my domain.com Done Template |frUUL|’IUHWUrksflmpurb'YuurCUmpannyVAC
Sl é! 10.2.194.77 [Add File] [Remove File]
| Configuration Property)
= # File Downloal
s Eaai - w| O Reset
< § EI ¢ b3
4. The LonMaker tool recommissions the FPM Device. When the LonMaker tool is done, the FPM

device shape will be solid green (online) or crosshatched green (soft offline), indicating that the

FPM device has been commissioned

i.LON SmartServer Freely Programmable Module User’s Guide

115

Testing FPM Applications

After you add an FPM application on the SmartServer, you can test it using the View — Data Points
Web page. To do this, you open the View — Data Points Web page, add the input and output data
points in the FPM device that you can use to observe the FPM application processing data point
updates, update one or more of the input data points, and observe that the output data points are
updated accordingly.

To test an FPM on your SmartServer, follow these steps:

1.
2.
3.

Click View and then click Data Points. The View — Data Points Web page opens.
Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

Under the FPM functional block, click the input data points that affect the values stored in the
output data points in the same FPM functional block and then add the output data points. The data
points appear in the View — Data Points Web page.

View - Data Points
-
Select Data Point
o o “g o Show Graph
General {2 Driver
Hals LAN -~ Name Format Value Unit Priority Status
B & SmartServer g | Net/LON/HVAC FPM/HVAC ot ’70 00 degrees ,co oI
% Remote Access e Buruac o — gL e
o E egrees
B2 Net 1 Function/nvisetpaint SNVT_temp_p 0.00 E] E] o] 255 NUL
== LON Net/LON/HVAC FEM/HVAC degrees
T iLON App (Internal 2| Function/nviHysteresis FOTLED 0.00 B 255 nuL
RNI (Internal Net/LON/HVAC FRM/HVAC S
g nternal 3 BT SNVT_switch v [oFF B 255 NUL

= & HVAC FPM (Internal) =

Node Object

virth

Bl - HVAC Function
: nviSetPoint

nviTemp

b nvoStatus
[= nvochiller_onoff
b nvoHeater_OnOff
| nviEnable
‘ nviHysteresis

Enter values for the input data points that will cause the FPM application to update the value
stored in the output data point.

View - Data Points

Show Graph
Name Format Value Unit Priority Status
0 Net/LON/HVAC FPM/HVAC Function/nviTemp SNVT_temp_p 78 E] E] dcegrees 255 ONLINE
1 Net/LON/HVAC FPM/HVAC Function/nviSetPoint SNVT_temp_p 725 E] E] dceg"ee“" 255 ONLINE
2 | Net/LON/HVAC FPM/HVAC Function/nviHysteresis SNVT_temp_p 4.5 E] E] dcegrees 255 ONLINE
3 | Einction/nvoChiller OnOf SNVT_switch v | |ON E] 255 ONLINE

Observe that output data points are updated accordingly based on the algorithm you wrote in the
FPM application. In this example, the nvoChiller OnOff output data point (SNVT_switch) turns
on when the nviTemp input data point is greater than the sum of the nviSetPoint and the
nviHysteresis input data points (all SNVT_temp_p types).

Connecting FPM Data Points

After you verify that your FPM is functioning properly, you can use LONWORKS or Web connections
to connect the data points declared in your FPM to the data points on the internal SmartServer device,
the data points in another FPM application, and the data points of the external devices connected to the
SmartServer.

116

Deploying Freely Programmable Modules on a SmartServer

The major difference between LONWORKS connections and Web connections is that LONWORKS
connections propagate data point updates over a LONWORKS channel via the LonTalk Protocol or the
LonTalk protocol tunneled through an IP-852 channel. Web connections propagate data point updates
via SOAP/HTTP over a TCP/IP network. Web connections provide an alternative solution to
LONWORKS connections over an [P-852 channel for connecting devices over multiple networks;
however, Web connections are much slower (40 data point updates per second) than LONWORKS
[P-852 connections (1,000 updates per second).

To integrate your FPM applications with external devices stored in an LNS network database, you can
you can use LONWORKS connections, which you can create with the LNS tree or an LNS application
such as the LonMaker tool. Alternatively, you can copy the data points from the LNS tree to the
SmartServer tree via the LNS Proxy Web service and then create Web connections between the data
points from the SmartServer tree.

Creating LONWORKS Connections

You can connect the data points in your FPM application using LONWORKS connections. You can
create LONWORKS connections using the LNS tree in the SmartServer Web interface (via the LNS
Proxy Web service) or using an LNS application such as the LonMaker tool. You can create two types
of LONWORKS connections:

e Output data points on the SmartServer or external devices (the source data points) to the input data
points declared in the FPM application (the target data points).

e Output data points declared in the FPM application (the source data points) to the input data points
on the SmartServer, input data points in another FPM application, or the input data points on
external devices connected to the SmartServer (the target data points).

Note: If you are using the SmartServer in Standalone mode or your FPM devices are using the v40
XIF, you cannot create LONWORKS connections with the LonMaker tool. In this case, you can create
Web connections from the SmartServer tree to connect the data points in your FPM applications. See
the next section, Creating Web Connections, for how to do this.

Connecting FPM Data Points with the LNS Tree

You can create LONWORKS connections with the data points declared in your FPM application from
the LNS tree. To do this, follow these steps:

1. Verify that you have completed the following steps:

a. Installed the Echelon i.LON Enterprise Services on the i.LON SmartServer DVD or the
1.LON SmartServer Programming Tools DVD

b. Added an LNS Server to the LAN.

c. Configured the SmartServer to use LNS network management services (LNS Auto or LNS
Manual) and synchronized the SmartServer to an LNS network database.

See Using LNS Network Management Services earlier in this chapter for how to do complete these
steps.

2. Verify that you have commissioned the FPM device using the SmartServer or an LNS application
such as the LonMaker tool. See Commissioning FPM Devices earlier in this chapter for how to do
this.

3. From the LNS tree in the left frame of the SmartServer Web interface, expand the LNS Server,
LNS network database, channel, device, and functional block containing the hub (source) network
variable.

4. Right-click a hub (source) network variable and then click Add Binding in the shortcut menu.

i.LON SmartServer Freely Programmable Module User’s Guide 117

Select Data Points

® General O Driver

= gy LAN ~
= &) SmartServer
T Remote Access
(48 HVAC Network Properties

2 my mailserver.mv _domain.c

=& 10.2.124.50 B
= () HVAC Network Delete
= =< LON
Q AL Rename
Bl &f HVAC FPM Device | copy External NV

nviACSwitch_1 | Add Binding
: nviFurnacesw_]
I nvoHVACMode '«
(] HVAC Function[0]
= b VirtFb

5. The Configure — WebBinder Web page opens and the hostname of the LNS Server and the LNS
network database in which the hub network variable is stored appear under the WebBinder
Destinations icon in the application frame to the right.

Show Value

Configure - Web Binder
I
Select Source Data Point Select Target Data Points
@ General O Driver = k& Web-Binder Destinations
Hgfe LAN ~ | B]10.2.124.50
= & SmartServer (@) HVAC Network

T Remote Access
() HVAC Network
2 mv_mailserver.my domain.com
=l (S 10.2.124.50
Bl (@) HVAC Netwaork
E=< LON
& A1
= &f HVAC FPM Device
nviACSwitch_1
: nviFurnaceSw_1
= nvoHVACMode_ 1

(] HVAC Function[0]
® 4 VirtFb

6. From the Webbinder Destinations tree on the right frame, expand the LNS network database,
expand the network, channel, device and functional block containing the desired target network
variables to be connected, and then click one or more compatible target network variables.

118 Deploying Freely Programmable Modules on a SmartServer

Configure - Web Binder
Select Source Data Point Select Taraet Data Points
@ General O Driver = k& Web-Binder Destinations
b gls LAN ~ | B%]10.2.124.50
£ & SmartServer = (@) HVAC Network
T Remote Access E=< LON
() HVAC Network & Al-1 _
2 my mailserver.my domain.com =l &f HVAC FPM Device
=& 10.2.124.50 (] Digital Encoder(o]
E @ HVAC Network = (] HVAC Function[0]
25 LON : nciHeartbeat_1
Q Al- 1 nc!Hyslterems_l
= f HVAC FPM Device ;ll nc!$;ﬂlr::(tel_l .
= [Digital Encoder[0] neithrotie_
g nVIACSwitch_1 = nviHVACMode_1
nviFurnaceSw_1 = nv!SetPomt_l
= | nvoHVACMode_1 | nviTemp_1
=| HVAC Network/LON/H' [nvoAC_onoff_1
[HVAC Function[0] 2 j® nvoFurnace_onoff_

7. References to the target LONWORKS network variables (ﬂ) are added underneath the hub
network variables in the LNS tree in the left frame. Updates to the selected hub network variable
will be propagated to the target network variables listed underneath the hub.

Repeat this step to connect the selected hub network variable to any other desired compatible
target hub network variables.

e If the target network variable is not compatible with the hub network variable a warning
message appears. You can delete the connection by right-clicking the reference to the target
network variable on the LNS tree in the left frame and clicking Delete on the shortcut menu.
See Chapter 5 of the i.LON SmartServer User’s Guide for more information on how to do
this.

e You can also check whether a LONWORKS CONNECTION is valid by right-clicking the
reference to the target network variable on the LNS tree in the left frame and clicking
Validate on the shortcut menu. The WebBinder Validation Results dialog opens and
displays the results. See Chapter 5 of the i.LON SmartServer User’s Guide for more
information on how to do this.

8. Click Submit. When an event-driven update defined in the device application occurs, the hub
network variable sends an updated value to the selected target network variables.

9. Optionally, you can change the messaging service used for the connection (Acknowledged,
Repeating, or Unacknowledged). To do this, click Driver, and then select one or more of the
target network variables under the hub network variable in the LNS tree.

Note that all LonWorks connections created in the LNS tree use Subnet/Node ID addressing.
This means that a message packet travels from the sending device to the destination device using
the 2-byte logical address of the destination device in the network.

The default messaging service for LonWorks connections created in the LNS tree is
Acknowledged LonBinding.

i.LON SmartServer Freely Programmable Module User’s Guide 119

120

Setup - Web Binder

Select Binding Targets

O General @ Driver
I efe LAN ~
B & SmartServer
T Remote Access
[() HVAC Network
2 my mailserver.my domain.com
= (& 10.2.124.50
=l () HVYAC Network
B =€ LON
& AL
El &f HVAC FPM Device
= () Digital Encoder[0]
: nviACSwitch 1
nviFurnaceSw 1
/[nvoHVACMode 1
= HVAC Network/LON/k
i (] HVAC Function[0] v

kN

‘al' Name: HVAC Network/LON/HVAC FPM Device/HVAC Function[0]/nviHVACMode_1

Binding Property Value

Service Type Acknowlegded LonBinding E]
Priority ’2557 (0 .. 255)

Propagate

See Chapter 5 of the i.LON SmartServer User’s Guide for more information on selecting a

messaging service.

10. You can add the hub and target network variables to the View — Data Points Web page and test

that the LonWorks connections are updating the target network variables accordingly. To test your

LONWORKS connections in the LNS tree, follow these steps:

a. Click View and then click Data Points. The View — Data Points Web page opens.

b. Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

c. Inthe LNS tree, click the output data points on the SmartServer, an FPM, or on an external
device that are bound to input data points in the FPM application. Observe that the input data
points in the FPM application have the same values as the output data points to which they are

connected.

View - Data Points

Show Graph

First Log Entry: 2008-02-01 15:22:20

Name

HVAC Network/LON/HVAC FPM
0| Device/Digital Encoder

[0]/nwvoHVACMode_1

HVAC Network/LON/HVAC FPM
1 Device/HVAC Function

[0)/nviHVACMode_1

Entire Range %

1P

Last Log Entry: 2008-02-01 15:23:01

Address Format Value Unit

HVAC
10.2.124.50 SNVT_hvac_mode HVAC_COOLB E] mode 255

names

HVAC
10.2.124.50 SNVT_hvac_mode HVAC_COOLE] E] mode 255

names

Priority Status

ONLINE

ONLINE

d. Click the output data points in the FPM application that are bound to the data points on the
SmartServer, another FPM, or an external device. Observe that the input data points on the
SmartServer or external device have the same values as the output data points in the FPM
application to which they are connected.

View - Data Points

Show Graph

First Log Entry: 2008-02-01 15:25:33
Name

Function[0]/nvoAC_OnOff_1
HVAC Metwork/LON/iILON App/AC
State/nviClavalue_1

HVAC Metwork/LON/HVAC FPM Device/HVAC

Entire Rangs +

P
Address

10.2.124.50

Format
SMVT_switch

10.2.124.50 | SMVT_switch

Last Log Entry: 2008-02-01 15:26:2(

Value

v ME] (] 255
v looo[v] [] 255

Unit Priority Status|

OMNLINH

CMLINE

Deploying Freely Programmable Modules on a SmartServer

http://10.2.124.111/user/echelon/ViewDataPoints_Help.htm

Note: For more information on creating LONWORKS connections with the LNS tree, including
how to validate and delete them, see Chapter 5 of the i.LON SmartServer User’s Guide.

Connecting FPM Data Points with the LonMaker Tool

You can use the LonMaker tool to create LONWORKS connections with the data points declared in your
FPM application. To do this, follow these steps:

1. Verify that you have completed the following steps:

a. Installed the Echelon i.LON Enterprise Services on the i.LON SmartServer DVD or the
i.LON SmartServer Programming Tools DVD.

b. Added an LNS Server to the LAN.

c. Configured the SmartServer to use LNS network management services (LNS Auto or LNS
Manual) and synchronized the SmartServer to an LNS network database.

See Using LNS Network Management Services earlier in this chapter for how to do complete these
steps.

2. Verify that you have commissioned the FPM device using the SmartServer or an LNS application
such as the LonMaker tool. See Commissioning FPM Devices earlier in this chapter for how to do
this.

3. Connect the data points in your FPM application using either the Connector shape in the
LonMaker Basic Shapes stencil, the Connector tool on the Visio Standard toolbar, or the
Network Variable Connection dialog box. See the LonMaker User’s Guide for more
information on creating LONWORKS connections with these methods.

4. Monitor the LONWORKS connections to observe that the data points in the FPM application and
the data points on the devices to which the FPM data points are bound are being updated
accordingly.

Oub[0.0 0] Inc[0.0 O] ka2 S—
evice.HVAC Function[0]

HUAL Furesianf0] swiSePoir_1

A

HYAC Function[0] meTeme_1

iLON App Fumace State

LON

HVAC FPM Devica ILON NI

Creating Web Connections

You can connect the data points in your FPM application using Web connections. You can use Web
connections if you want to use polled updates to process data point values, or you can use them if you
are running the network with the SmartServer operating in Standalone mode (LONWORKS connections
are not supported in this mode). Typically, you will create two types of Web connections:

e Output data points on the SmartServer or external devices (the source data points) to the input data
points declared in the FPM application (the target data points).

e Output data points declared in the FPM application (the source data points) to the input data points
on the SmartServer, input data points in another FPM application, or the input data points on
external devices connected to the SmartServer (the target data points).

To create Web connections with the data points declared in your FPM application, follow these steps:

i.LON SmartServer Freely Programmable Module User’s Guide 121

122

If you want to use Web connection to bind the data points in your FPM application to data points
on SmartServers other than your local SmartServer, you can add one or more remote SmartServers
to the LAN. To add a remote SmartServer to the LAN, follow these steps:

a.

d.

Right-click the LAN node, point to Add Host, and then click i.LON SmartServer on the
shortcut menu.

Navigate

& General O Driver

S gk LAN
E & | Add Host P | &b Server (Email, Time, IP-852 Config)

& Remote Acte|
" Net ==/ 1.LON SmartServer

2 my_mailserver. @ Ins

The Setup — Remote i.LON SmartServer Web page opens, and a SmartServer node is added
to the tree view below the LAN node.

Setup - Remote i.LON SmartServer

IP or Hostname
¢ J0000

Host Property Value

SOAP Path |N\|’SDUiLON1UU_WSDL
HTTP Port (Web Server / SOAF) ,r

Retry Time (defaults to 120 s) ’T Seconds
SOAP User Name * |

SOAP Password *

Format values in WebBinder

SOAP messages using Data Point Format v

[* For i.LON SmartServer Destination Servers, SOAF Authentication Parameters may be configured in the webparams.dat file

Configure the SOAP/HTTP properties of the SmartServer. See Chapter 3 of the i.LON
SmartServer User’s Guide for more information on configuring these properties.

Click Submit.

If you want to use Web connections to bind the data points in your FPM application to the data
points of external devices stored in an LNS network database, you can copy the data points on the
external devices from the LNS tree to the SmartServer tree via the LNS Proxy Web service. To do
this, follow these steps:

a.

Follow the steps in Selecting LNS Network Management Services to install the Echelon i.LON
Enterprise Services, add an LNS Server to the LAN, and configure the SmartServer to use
LNS network management services (LNS Auto or LNS Manual).

In the LNS tree, expand the LNS network database, channel, device, and functional block
containing the network variable or configuration property to be added to the SmartServer tree,
right-click the network variable or configuration property, and then select Copy External NV
on the shortcut menu. To copy multiple network variables or configuration properties, click
one, and then either hold down CTRL and click all others to be copied or hold down SHIFT
and select another to select the entire range.

Deploying Freely Programmable Modules on a SmartServer

Mavigate

® General O Drivar
HEE LAN Properties
= & smartServer
T Remote Access
() HVAC Network | Delete
2 my_mailserver.my
=& 10.2.124.50
= (@) HVAC Network | Copy External NV
=T 5,151_1 Add Binding
=] D Al-1 Show Value

= Analo

= nciADCConfigure

| nciADCFilter

= nciDeviceOffset

= ncil ocation

ﬂl nciMaxSendTime 3

Duplicate

Fename

c. Inthe tree of the target SmartServer, right-click the any object in the network branch and click
Paste External... on the shortcut menu.

Mavigate

® General O Driver
= ghs LAN »~
=l &2 SmartServer
T Remote Access
(v HVAC Network
2 my mailserver.n Properties
= (& 10.2.124.50
El @) HVAC Networ Paste external ...
ol == :J;?D_N Rename
Hoaf Al-1
=] A1 Add Channel »
I Analog
= ncADCConfigure
) nciADCFilter
= nciDeviceOffset
= ncil ocation
= nciMaxSendTime I

d. The data points and their parent channel, device, and functional block are added to the
network tree of the target SmartServer.

i.LON SmartServer Freely Programmable Module User’s Guide 123

Select Channels

® General O Driver
Hl gl LAN
=l &= SmartServer
T Remote Access
=l (w8 HVAC Metwork
= ¥ VirtCh
== LON
£ iLON App (Internal)
=/ HVAC FPM Device
Flaf Al- 1
=] a1
= Analog
F 2 my mailserver.my domain.com
= (& 10.2.124.50
= (%) HVAC Network
== LON
Haf Al-1

e. Click Submit.

3. From the local SmartServer tree on the left frame, right-click a source data point and then click
Add Binding in the shortcut menu. The source data point will typically be an output data point on
the internal SmartServer device, an output data point on an external device connected to the
SmartServer, or an FPM output data point. Updates to the source data point in a Web connection
are propagated to one or more target data points.

Select Source Data Point

& General O Driver
H gfs LAN ~
= & SmartServer

" Remote Access
El (& HVAC Network
=== LON Duplicate
i iLON App (Internal)

HVAC FPM (Internal) | Delete

RNI (Internal)

RNI {Internal Rename
@ Ltaldv (Internal)
= B A1 Add Binding
= (] Analog Input[0]

Analog_Temperat Show Value
Analog Inputf1
t #| Digital Encoder[0

t #| Digital Encoder(1
1| Analog Fn Block[o
® 4| Analog Fn Blockl1
1| Analog Fn Block[2
1| Analog Fn Block[= hd

4. The Configure — Web Binder Web page opens and the hostnames of the local SmartServer and
any remote SmartServers added to the LAN, which are collectively referred to as Webbinder
Destinations, appear in the application frame to the right. If a Webbinder Destination cannot be
reached, a single child node called “Target” appears with the IP address of the SmartServer below
the Webbinder Destinations node.

Properties

124 Deploying Freely Programmable Modules on a SmartServer

Configure - Web Binder

Select Source Data Point

@ General O Driver
H als LAN
=l & SmartServer
T Remote Access
[l (@) HVAC Network
==< LON
i iLON App (Internal)
HVAC FPM (Internal)
RNI (Internal)
4 Ltaldv (Internal)
5] =N S
= (] Analog Input[0]

Analog_Temperatur:
Analog Input[1

£+| Digital Encoder[0
{}| Digital Encoder1
= F¥ Analog Fn Block[o

Select Target Data Points

=)& web-Binder Destinations
-'érl SmartServer

From the Webbinder Destinations tree on the right frame, expand the SmartServer Webbinder

destination node containing the target data points to be connected, expand the network, channel,
device, and functional block containing the desired target data point, and then click one or more

compatible target data points.

The target data point will typically be an input data point declared in the FPM application (if the
source data point is an output data point on the internal SmartServer device or an output data point
on an external device), or it will be an input data point on the internal SmartServer device or an

external device connected to the SmartServer (if the source data point is an FPM output data

point).

Configure - Web Binder

Select Source Data Point

@ General O Driver
S gfs LAN
B & SmartServer
T Remote Access
El (& HVAC Network
E5< LON
i iLON App (Internal)
= & HVAC FPM (Internal)
HVAC Function[0]
HVAC Function[1
(] switch Encoderl0
(] switch Encoderf1
= {§ VirtFb
@ RNI (Internal)
@ LtaLdv (Internal)
Sl = JN S
= [Analog Inputf0]
= b Analog_Temperature
| smartServer:HVA(
(] Analog Input(1]

hd

Select Target Data Points

= k& web-Binder Destinations
E|-a'| SmartServer
=l (@ HYAC Network
B = LON
E] ILON App (Internal)
=l & HVAC FPM (Internal)
= (] HYAC Function[0]
: nviHVACMode_1
nviSetPoint_1
‘ nviTemp_1
b nvoac_onoff_1
h nvoFurnace_0OnOff_1
ﬂ nciHeartbeat_1
ﬂ ncioffline_1
ﬂ nciThrottle_1
ﬂ nciHysteresis_1
(] HvAC Function[1]
(] switch Encoder[0
(] switch Encoderf1

4} VirtFb
o

i.LON SmartServer Freely Programmable Module User’s Guide

125

6. Click Submit. References to the target data points are added underneath the source data point in
the local tree on the left frame.

7. Test that your Web connections are updating the FPM data points accordingly following these
steps:

a. Click View and then click Data Points. The View — Data Points Web page opens.
b. Close the graph by clicking the ‘X’ in the upper right-hand corner of the application frame.

c. In the tree, click the data points under the FPM functional block that are members of a Web
connection. Click the data points on the SmartServer that are bound to the FPM data points in
the Web connections.

d. In the following example, observe that the nvoHVACMode_1 output data point on the
HVAC device (#2) has the same value as the nviHVACMode_1 input data point on a
different functional block on the HVAC device (#3); the Analog_Temperature data point on
the external Analog Input device (#4) has the same value as the nviTemp_1 input data point
on the HVAC FPM device (#5); and the nvoAC_OnOff_1 output data point in the HVAC
FPM (#8) has the same value as the nviClaValuel data point on the SmartServer (#9). These
data points are bound with Web connections, which keep these data points synchronized.

B .
View - Data Points
b
Show Graph
|
L |
First Log Entry: 2008-02-03 16:51:16 Entire Range Last Log Entry: 2008-02-03 16:53:50
Name Format Value Unit Priority Status
HVAC Network/LON/iLON App/Digital Input - E]
0 1/nviClsvalueFb_1 SNVT_switch.state v 1 E] 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder - B E]
L roynviacswitch_1 SNVT_switch state 1 state code 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder E] HVAC mode
[l F e on SNVT_hvac_mode HvAc_cooL [v] [L] Hvrc 255 ONLINE
HVAC Network/LON/HVAC FEM/HVAC Function E] HVAC mode
3 [0)/mviHVACMods_1 SNVT_hvac_mode HVAC_COOL E] names 255 ONLINE
4 HVAC Network/LON/AI-1/Analog Input SNVT_temp_f£US ’778 E] Q F 255 ONLINE
[0]/analog_Temperature
5 HVAC Network/LON/HVAC FPM/HVAC Function guut temp f2Us 73 E] E] oF 255 ONLINE
[0)/nviTemp_1
g | HVAC Metwork/LON/HVAC FPM/HVAC Function SNVT_temp_f£US ’7-{2_5 E] E] oF 255 ONLINE
[0]/nviSetPoint_1
HVAC Network/LON/HVAC FPM/HVAC Function] E]
7 [0]/ncitysteresis_1 UCFTHysteresis 45 E] °F 255 ONLINE
HVAC Network/LON/HVAC FPM/HVAC Function - B E]
- [0)/rvoAC,_OnOf_1 SNVT_switch ~ ON 255 ONLINE
HVAC Network/LON/ILON App/Digital Output - E]
- 1/nviClavalue 1 SNVT_switch ~ ON E] 255 ONLINE

e. Enter different values for the input data points in the Web connections and observe that the
FPM application processes the updated values received by its input data point and writes a
value to the output point, The Web connection propagates the updated value in the FPM
output data point to the input point to which it is connected, which may be on the
SmartServer, on another FPM, or on an external device.

In this example, the value in the Analog_Temperature data point on the external Analog
Input device (#4) has dropped to 65°F. The Web connection propagates this value to the
nviTemp_1 input data point on the HVAC FPM device to which it is connected (#5). The
decreased temperature is calculated by the FPM application, which results in its
nvoAC_OnOff_1 data point (#8) being changed to OFF. The Web connection then
propagates the updated OFF value in the nvoOAC_OnOff_1 data point to the nviClaValuel
data point on the SmartServer (#9).

126 Deploying Freely Programmable Modules on a SmartServer

. . B
View - Data Points
M
Show Graph
L |
First Log Entry: 2008-02-03 16:51:16 Last Log Entry: 2008-02-03 16:54:42
Mame Format Value Unit Priority Status
HVAC Network/LON/iILON App/Digital Input - E] E]
Y i/nviClsvalusFb 1 SNVT_switch.state v 1 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder - E]
- [0)/mviACSwitch_1 SMVT_switch.state v [1 B state code 255 ONLINE
HVAC Network/LON/HVAC FPM/Switch Encoder B HVAC mode
[l (S o ar o SNVT_hvac_mode HVAC COOL[v] [] HVAC 255 ONLINE
HVAC Network/LON/HVAC FPM/HVAC Function E] HVAC mode
3 [0]/nviHVACHode. 1 SNWT_hvac_mode HWVAC_COOL B names 255 ONLINE
HWVAC Network/LON/AI-1/Analog Input B a
4 [0)/Analog Temperaturs SNVT_temp_f2US 413 Q F 255 ONLINE
5 HVAC Network/LON/HVAC FPM/HVAC Function SNVT_temp_f£US ,755 E] B oF 255 ONLINE
[0]/nviTemp_1
HVAC Network/LON/HVAC FPM/HVAC Function B o
[0)/mviSetPaint_1 SNVT_temp_f2US 72.5 Q F 255 ONLINE
7 HVAC Network/LON/HVAC FPM/HVAC Function) cory crerecis 45 B E] oF 255 ONLINE
[0]/nciHysteresis_1
HWVAC Network/LON/HVAC FPM/HVAC Function E]
[0)/nvoAC. OnOF 1 SNVT_switch v |oFF] 255 ONLINE
HVAC Network/LON/ILON App/Digital Cutput - B E]
2 1/nviClavalue_1 SNVT_switch b/ |OFF 235 ONLINE

Note: For more information on using Web connections, including how to validate, delete, and add
attachments to them, see Chapter 4 of the i.LON SmartServer User’s Guide.

Creating Custom FPM Configuration Web Pages

You can create configuration Web pages for your FPM applications using Adobe Contribute CS3 with
the i.LON Vision toolkit. To do this, you add i.LON Vision read/write and application objects to the
default custom Web page that was created for your FPM when you uploaded it to the SmartServer
flash disk. The default custom Web page for your FPM is located in the root/web/config/FB folder on
the SmartServer flash disk.

Once you publish the FPM configuration Web page, you can click the General button above the
navigation pane on the left side of the SmartServer Web interface, click the functional block
representing your FPM application, and use the configuration Web page to read and write values to the
data points in your FPM application. In addition, all instances of the same functional block in a static
device interface and any new FPM devices you create will automatically have this custom FPM
configuration pages built for them.

To create a custom FPM configuration Web page follow these steps:

1. Verify that a default configuration Web page has been created for your FPM application. To do
this, use an FTP client to browse to the root/web/config/Fb/folder on the SmartServer flash disk
and confirm that an .htm file with the program ID and name of your FPM application is in the
folder.

_____ B[l=]

X
:fl

File Edit Wiew Fawvorites Tools Help

eBack @ d l? /-\J Search = Folders v

w Go
Size | Type Modified

File Folder 2{4{2005 11:52 AM
Other Places File Folder 2/4/2008 2:01 PM
3] i File Folder 2{4{2008 11:51 AM
T e Documants & | 9FFD3E0000000400[5] LIFPTHYACCantraler. htm 4.02KE HTML Dacument 2{4{2005 3:44 PM
= M & | 9FFD3E0000000400[S]. UFPTMath. him 691 bytes HTML Document 2{4{2008 11:15 AM
& 1y hietwork Flaces £ | 9FFD3EN000000400[5] UFPTSwitchEncader. htm 978 bytes HTML Document 2{4/2008 11:52 &M

Details

i.LON SmartServer Freely Programmable Module User’s Guide 127

128

If an .htm file for your FPM application is not in the folder, use the i.LON Development tool to
create the default FPM configuration Web page following these steps:

a. Inthe C/C++ Projects view, expand the Release folder, right-click the <company program
ID>.UFPT<FPM name>.app file and then click Transfer to i.LON SmartServer in the
shortcut menu.

b. In the Deployment Settings window of the Install FPM Module dialog, select the Default
Web Page check box.

c. Click Finish. The FPM executable module is reloaded on your SmartServer and the custom
FPM configuration Web page for the FPM application is created.

Install Adobe Contribute CS3 and the i.LON Vision software, and then create a Website
connection between Adobe Contribute CS3 and your SmartServer. For more information on how
to do this, see Chapter 12 of the i.LON SmartServer User’s Guide.

A trial version of Adobe Contribute CS3 is included on the i.LON SmartServer DVD and the
i.LON SmartServer Programming Tools DVD. You can use this trial version of Adobe Contribute
CS3 for up to 30 days before you are required to activate the program in order to continue using it.

Click the Choose button (=9 Chaose. ..) on the Browser toolbar. The Choose File or Blog Entry
dialog opens.

Browse the root/web/config/Fb directory on the SmartServer flash disk, select the .htm file for
your FPM configuration Web page, and then click OK.

Choose File or Blog Entry g|
Lok in: |_| Fb v| et B Preview:
[images @ o vetrac v toana
nls o g
S| 9FFD3E0000000400[5] UFPTHYAC Controller. hirm ;
5] <9FFD3E0000000400[S]. UFPTMath. htm
@ AFFD3EN000000400[5]. UFPT SwitchEncader, htm
< ?

Web address: hikp:fi10.2, 124,82 config/FbfSFFDZE0000000400[5], UFPTHYACConkroller. htm

——

Click the Edit Page button on the Editor toolbar (& Edit Page |)

Delete the layer containing the “Default Configuration Page for...” text.

Click the iLON button on the Editor toolbar (= .ion) and then select an i.LON Vision
read/write or application object to be added to your custom FPM configuration Web page.

Note: You cannot add Image Swapper or Check Box objects to your custom FPM configuration
Web page. This is because FPM configuration Web pages must reference the programmatic
names of data points, while presets cannot be associated with the programmatic names.

Deploying Freely Programmable Modules on a SmartServer

8. The respective dialog for the selected i.LON Vision object opens.

iLon-Object - Slider

Layer
Left 20 Width [lon]
Top 20 Height EO
Zlndex ﬁ:l
Slider
i Name |Data_Paint |® Real O alias O Frog

D ata Point

Farmat | | [Select]

Name | |® Real O aliae O Prog
Feedhack

Formatl | [Select]
ax dge | |
“Wirite Pricrity | |
Minimirm [|
Marimum | |

Show unit []
A T |

Presentation | HorizontalS lider ﬂ
Design-Time Properties
Hide DF Mame O

9. Specify the data point to be monitored and controlled by the i.LON Vision object. You can either
click Prog Name and manually enter the name of the data point, or you can click Select and use
the Data Points dialog to select the data point following these steps:

a. In the Data Points dialog, click Prog Name. This enables all instances of your FPM
application to write to their respective data points. You must select this option or your FPM
configuration Web page will not function properly for other instances of the FPM.

b. Select the network, channel, device, and then the functional block of the FPM data point to be
monitored. Select the data point from the Data Point column.

e Ifyou are adding a Show Value, Text Field, or Text Area object and you selected a
structured data point, you can select a field from the Field column.

e Ifyou are adding a Combo Box or Select Box object and you selected a structured data
point, you can select a field with an enumerated value from the Field column. If you
select a field with a scalar value, the list box will not function.

Note: You can click the left and right double arrows at the bottom of a selection box to
display the previous or next 50 network objects in the box.

c. Click OK to return to the object dialog. The Name property is updated with the
programmatic name of the data point. The Format property is updated to show the format
description of the selected data point. The format description consists of the data point’s
program ID; SNVT, SCPT, UNVT, UCPT, or built-in data type; and format (e.g., SI metric or
US customary).

i.LON SmartServer Freely Programmable Module User’s Guide 129

130

ilLon-Object - Slider

Presentation HorizontalSlider

Dezsign-Time Properties
Hide DP Name lul

Layer
Left Wwidth 100
Top Height
ZAndex
Slider
X Hame |nviSetF'oinl |O Real O Al ® Frog

Drata Point

Format [H0000000000000000[]. SNYT_temp_f4U5 | [selet]

Name | |® Real O alias O Prag
Feedback

Formatl | [Select]
Max Age | |
‘Write Priarity | |
MiriirnLirn | |
M awirum | |

Show unit []

10. Configure the other object properties in the dialog following Chapter 12 of the i.LON SmartServer
User’s Guide, and then click OK.

Repeat steps 7-10 to add other 1.LON Vision objects to your custom FPM configuration Web
page.
Optionally, you change the title of your FPM configuration Web page. The default page title uses

the following format: <network>/<channel>/<device>/<functional block>:Configure. To change
the page title, follow these steps:

11.

12.

a.

b.

Click the Page Properties icon on the Editor toolbar (EEI). Alternatively, you can click
Format and then click Page Properties. The Page Properties dialog opens.

Page Properties le

Cakegary Title/Encading

Title/Encading
Appearance
Links

Headings Encoding: |Llnicnde(LlTF-8) vH Reload]

Tile: | MLS_TITLE |

[Ok l[Cancel H Apply]

In the Title box, enter a descriptive page title and then click OK.

Tip: You can translate the page title into a number different languages using the i.LON
SmartServer Programming Tool. See Chapter 8, Localizing the SmartServer Web Interface,
for more information on how to do this.

Deploying Freely Programmable Modules on a SmartServer

13.

14.

15.

Click the Publish button on the Editor toolbar (| &2 Publish |y to save the current draft of your custom
FPM configuration Web page.

View your custom FPM configuration Web page from the SmartServer Web interface. To do this,
click the General button above the navigation pane on the left side of the SmartServer Web
interface, and then click the functional block representing your FPM application.

HVAC FPM Configuration Web Page: HVAC Function
Navigate RVAC_COOL [7) Data Point Name = NetLON/HVAC FPM Device/ HVAC Function[0])miHVACMode |
@ General O Driver Value = HVAC_COOLHVAC mode names
Fafs LaN Status = AL_NQ_CONDITION
[= & SmartServer Priority = 255
T Remote A - - -
i ra—— [78°F |DataPoint Name = NetLON/HVAC FPM Device/ HVAC Function[0)mviTemp_L
B¢ LoN Valne = 78°F
[iLON App (Internal) Status = AL_NO_CONDITION
Fl & HVAC FPM Device (Int Priority = 255
@ HVAC Function[1] Data Point Name = Net LON/HVAC FPM Device HVAC Function[0]/nviSetPoint_1

Switch Encoder[0] | © ' % © 2 50 e m s s 100 Value = 72.53512°F
(] switch Encoder(1] 0O T Stats = AL_NO_CONDITION
4 VirtFb Priority = 255

@ Ltal dv (Internal
@ ENI (Internal)
% virtCh
2 my mailserver.my domain.cc

‘DN E] Data Point Name = Net LON/HVAC FPM Device/ HVAC Function[0])/'nvoAC_OnOff 1
Vatue = 100.0 Loull
Statns = AL_NO_CONDITION

Note: If the FPM configuration Web page in the SmartServer Web interface does not display the
draft you published with Contribute, you need to clear your browser’s cache. To do this, follow
these steps (for Internet Explorer 7):

e On the Internet Explorer Tools menu, click Internet Options. The Internet Options dialog
opens to the General tab.

e Under Browsing History, click Delete to open the Delete Browsing History dialog.

e Inthe Temporary Internet Files section, click the Delete Files button. Click Yes to confirm
the deletion of the files. All the files that are currently stored in your cache are deleted.

e Click Close, and then click OK to exit.
e Press F5 or click the refresh button on the Internet Explorer toolbar to refresh the screen

You can now use your custom FPM configuration Web page to read and write values to the data
points in your FPM application.

Updating FPMs

The following section describes how to update your FPMs. The steps you perform depend on which
component of your FPM you want to update: data point declarations (resource files), the FPM
application (the source file), or the device interface.

Updating Data Point Declarations

You can add new network variable and configuration property members to the UFPT used by your
FPM, or update existing members and then add or update the data points in the source file (.cpp
extension).

To update the data point declarations in your source file, follow these steps:

1.

Use the NodeBuilder Resource Editor to generate an updated resource file set for your company.
See Chapter 3 for more information on generating an updated resource file set.

Upload your company’s updated resource file set to the root/LonWorks /types/User/<Your
Company> folder on the SmartServer flash disk.

i.LON SmartServer Freely Programmable Module User’s Guide 131

132

Reboot your SmartServer.

Use the i.LON SmartServer Programming Tool to manually import the new or updated data point
declarations. In the LonMark Resource View, right-click the UFPT from which the FPM project
was created, and then click Import All Declarations on the shortcut menu. Alternatively, you can
click the UFPT and then click the Import Declare All Data Points icon (=%) at the top of the
LonMark Resource View.

Continue to the next section, Updating FPM Applications. Note that if you are updating an FPM
application that uses a static interface, you must also update the device interface (XIF) file, as
described in Updating Device Interfaces.

Updating FPM Applications and Drivers

You can use the i.LON SmartServer Programming Tool to modify the source file (.cpp extension) of
your FPM application or driver. After you have finished modifying the code, you can upload the
updated FPM to your SmartServer with the i. LON SmartServer Programming Tool. To do this, follow
these steps:

1.

In the C/C++ Projects view of the i. LON SmartServer Programming Tool, expand the Release
folder, right-click the <company program ID>.UFPT<FPM name>.app file and then click
Transfer to i.LON SmartServer in the shortcut menu.

The Install FPM Module dialog opens with the Deployment Settings window.

Optionally, you can modify the properties in the window as described in Uploading FPM
Applications and Drivers earlier in this chapter.

Click Finish to upload your updated FPM to your SmartServer.

The current FPM executable module (.app extension) is stopped and unloaded, and the updated
module is then loaded and initialized.

Updating Device Interfaces

You can update the static device interface (XIF) file used by a FPM application, and you can change
the device interface used by an FPM device from a dynamic interface to a static interface and vice
versa.

To update the device interface and activate it in on the SmartServer, follow these steps:

1.

Create a new model file or update an existing model file, use i.LON LonWorks Interface
Developer tool to convert the model file to a new XIF file, and then upload the new XIF file to the
root/lonWorks/Import/<YourCompany> folder on the SmartServer flash disk. See Chapter 4 for
more information on these steps.

Verify that you have selected a network management service mode as described in Selecting a
Network Management Service earlier in this chapter.

Click Driver.
Select one or more devices from the tree to be upgraded.
e To select one device, click that device. The Setup - LON Device Driver Web page opens.

e To select multiple devices and perform a batch upgrade, click one device and then either hold
down CTRL and click all other devices to be upgraded or hold down SHIFT and select
another device to upgrade the entire range of devices. The Setup - LON Device Driver Web
page opens.

Deploying Freely Programmable Modules on a SmartServer

5.

[__Submit Setup - LON Device Driver

3 N Lon Device Properly Value
.‘. E iLON App (Internal) 1600 [Aer
= By Bguber Ortgrnall —
m @ BNI (Internall Hidden
o HVAC FPM (Internal) [smart
& () Noge Qbisct e Progress Identification Property Value
= @ VrtFh HManagement

=] HVAC Funchion Neuren 10
T eme O Program 1D [9000010128610428

@ S my mailsereermy domain.com Secandary Address (Domain. Subret.Nede) 8.0

Maxmum Number of Semulanecus Transachions 0

muSetPoint
OyiHVACMOde Masamum Number of Dynamic Functional Blocks 500
YAl
: u OFIFCOnd'tgr‘g’“ Mavimum Number of Dynamic Cata Paints 3000
nvofurnace On:
= poHysteresis Gengraphizal Pasition [
pgiHeartbeat
: eioffine Location 12 000000000000 HEX
= noTheottle Primary Addrass (Domain.Subnet Node) 0.0
- - iy e

Select LUN Devices .
. — -, Mama: Neb/LONMHVAC FPM Handle: -
OrGeneral @ Driver
Description:
ary

Maximal Lifetime of Transactions 0 Milliseconds
() Commssian Status |Uncormmissioned
(] application Status :Nlmu Hiachisd
=] agplication Imsae [B
5 | Sane Template [iraattanWarksAmpod/EchelaniL OHI00ILONI00_FTT_V30 U

Select the XIF file to be activated, following these steps:
In the Template property, click the button to the right.

b. The Choose File dialog opens.

Choose File

Property WValue
File Name

[Template

Select
® [@ LonMark (XIF)

[Cancel]

A

loaded onto the SmartServer, and then click the XIF file.

i.LON SmartServer Freely Programmable Module User’s Guide

Expand either the LonMark (XIF) folder, expand the subfolders containing the XIF file to be

133

134

Choose File

Property Value
File Name /root/lonWorks/Import/YourCompany/HVAC_Solution.xif

Template
= @ LonMark (XIF)

froot/lonWorks/Import/Echelon/iLON100/
Jfroot/lonWorks/Import/Echelon/LonPoint/Version2/
Jroot/lonWorks/Import/Echelon/LonPoint/Version3/
Jfroot/lonWaorks/Import/Echelon/FPM/

= froot/lonWorks/Import/YourCompany/

Select & hvac

'@ SwitchEncoder

‘& SwitchEncoder_rev?
& SwitchEncoder_revl
& SwitchEncoder[1]
/& HVACControl

& math_revi

& HVAC_Solution

[OK][Cancel]

d. Click OK to return to the Setup - LON Device Driver Web page.
e. Click Submit.

Right-click one of the selected devices in the SmartServer tree, point to Manage, and then click
Activate Template in the shortcut menu. Alternatively, you can clear and then select the Smart
Network Management check box to the left of the Template property in the Setup -LON Device
Driver Web page and then click Submit.

.LON SmartServer _ bovesco sy = ECHELON
Send Service Pin Message
SETUP Replace GS HELP LOG OFF
Commission
Setup - LON Dev
Decommission
set Onine
- Set Offline
Select LON Devices [e——
. Fetch P jin}
O General & Driver Properties Erenltr e 0
Elg?g LAN Download Image HEX
. Delete
Activate Template
T Remote Access Rename
Download CP-File
Save as Template
Query Status
= =< LON Change Channel » =
B iILON App (Internal) Clear Status
B3 Router (Internal Add Functional Block | wink ioned E]
= @ RNI (Internal) Reset
B o7 HVAC FPM (Internal Manage b == hed (]
(] Node Object
{J VirtFb i ‘ [
E| - HVAC Function ‘ImDUIDnkasJ’\mpnrb’YuurCnmpanylHVACisnlutmn,xlf B
nuTemp ([addrle][Removerie J[=~ J[-
nviSetPoint Property
| nviHVACMode # File Download
| nvoairconditione
b nunFirnare one™

Y ou must wait approximately 15 seconds for the SmartServer to instantiate the updated XIF file.
Once the XIF has been instantiated, you can expand the FPM device to see the functional blocks
and data points in the updated XIF.

Deploying Freely Programmable Modules on a SmartServer

Select LON Devices

) General & Driver
5 gz LAN
= &= SmartServer
T Remote Access
E:%: Net
I ¥ VirtCh
E =< LON
i iLON App (Internal)
@ RNI (Internal)
El & HVAC FPM (Internal)
) HVAC Function[Q]
=[] HVAC Function[1]
=[] switch Encoder[0]
: nviACSwitch 1
nviFurnaceSw 1
j®» nvoHVACMode 1
=[] switch Encoder[1]
{§ VirtFb
H 2 my mailserver.my domain.com

8. If you switched a static device interface to a dynamic interface, add a functional block
representing your FPM application as described in the Using a Dynamic Device Interface section
earlier in this chapter

Deploying FPMs on Multiple SmartServers

After you have deployed FPM applications on a development SmartServer, you can deploy the FPM
applications you have developed on multiple SmartServers. To do this, each SmartServer on which an
FPM application is to be deployed, must have an FPM programming license from Echelon. You can
then copy the files required to run the FPM applications to the SmartServer flash disk, reboot the
SmartServer, and then create, commission, and connect the FPM devices on the SmartServers.

To deploy FPM applications on multiple SmartServers, you do the following:
1. Verify that an FPM programming license from Echelon is installed on each SmartServer.

2. Verify that you have the correct user name and password to access your SmartServer via FTP and
that FTP access is enabled on your SmartServer. To do this, follow these steps:

a. Right-click the local SmartServer icon, point to Setup, and then click Security on the shortcut
menu. Alternatively, you can click Setup and then click Security. The Setup — Security
Web page opens.

b. Inthe General property, verify that the FTP/Telnet User Name and FTP/Telnet Password
properties are correct.

c. In the Service property, verify that the Enable FTP check box is selected.

3. Inthe browser of an FTP client such as Microsoft Internet Explorer 7, enter the FTP URL of your
SmartServer (ftp://192.168.1.222, for example).

4. Enter the FTP/Telnet user name and password for accessing your SmartServer via FTP.
5. Copy the following files to the listed folder on the SmartServer flash disk:

e Copy your company’s resource file set for the FPM (.ENU, fmt, .fpt, .is, and .typ files) to the
root/lonworks/types/user/<YourCompany> folder.

i.LON SmartServer Freely Programmable Module User’s Guide 135

o Ifthe FPM application uses static functional blocks, copy the device interface (XIF) file (.xif
extension) to the root/lonworks/import/<YourCompany> folder.

e Copy the FPM executable modules (.app extension) to the
root/modules/user/<YourCompany> folder.

e If you created a custom FPM configuration Web page for your FPM applications, copy your
custom Web pages to the root/web/config/Fb folder.

Reboot the SmartServers.

Create, commission, and connect the FPM devices on the SmartServers as described in this
chapter.

Deploying Licensed FPM Applications

You can deploy Echelon first-party FPM applications and third-party FPM applications on your
SmartServer. To do this, your SmartServer must not only have an FPM programming license from
Echelon, but it must also have a separate FPM application license from Echelon or the third-party FPM
vendor for the FPM application being deployed on your SmartServer.

136

To deploy an Echelon first-party FPM application or a third-party FPM application on your
SmartServer, you do the following:

1.

Verify that the license for the Echelon first-party FPM or third-party FPM to be deployed is
installed on the SmartServer. Echelon or the third-party FPM vendor should provide you with
instructions on how to install their FPM application licenses on your SmartServer.

Verify that you have the correct user name and password to access your SmartServer via FTP and
that FTP access is enabled on your SmartServer. To do this, follow these steps:

a. Right-click the local SmartServer icon, point to Setup, and then click Security on the shortcut
menu. Alternatively, you can click Setup and then click Security. The Setup — Security
Web page opens.

b. Inthe General property, verify that the FTP/Telnet User Name and FTP/Telnet Password
properties are correct.

c. In the Service property, verify that the Enable FTP check box is selected.

In the browser of an FTP client such as Microsoft Internet Explorer 7, enter the FTP URL of your
SmartServer (ftp://192.168.1.222, for example).

Enter the FTP/Telnet user name and password for accessing your SmartServer via FTP.
Copy the following files to the listed folder on the SmartServer flash disk:

e Copy the resource file set (ENU, fmt, .fpt, .is, and .typ files) provided by Echelon or the
third-party FPM vendor to the root/lonworks/types/<YourCompany> folder.

e Ifthe FPM has static interface, copy the device interface (XIF) file (.xif extension) provided
by Echelon or the third-party FPM vendor to the root/lonworks/import/<YourCompany>
folder.

o Copy the FPM executable module (.app extension) provided by Echelon or the third-party
FPM vendor to the root/modules/User/<YourCompany> folder.

e Ifacustom FPM configuration Web page was created for the FPM, copy the .htm files
provided by Echelon or the third-party FPM vendor to the root/web/config/Fb folder.

Reboot the SmartServer.

Create, commission, test, and connect the FPM on your SmartServer as described in this chapter.

Deploying Freely Programmable Modules on a SmartServer

7

Creating FPM Application Licenses

This chapter describes how to create licenses for your FPMs so that customers can
order and implement your FPMs on their SmartServers. It describes how to build an
FPM licensing tool. It explains how to enable a license validation feature in your
FPM application. It describes how to create FPM licenses. It lists the files you need
to provide to customers who order your licensed FPM applications.

i.LON SmartServer Freely Programmable Module User’s Guide 137

Licensing Overview

You can create FPM application licenses and let customers order and implement your FPMs on their
SmartServers. To create an FPM application license and make your FPM application available for
order, you do the following:

Create an FPM licensing tool.

Enable license validation in your FPM application.

Build the release version of your licensed FPM application.

Create FPM application licenses.

Supply your customers the FPM licenses, FPM applications, your FPM library, and your resource
files.

kL=

Creating an FPM Licensing Tool

The i.LON SmartServer Programming Tools includes an i.LON License Generator program that you
can use to construct your own FPM licensing tool. The i.LON License Generator is located in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder, and it includes the following three
components:

e The main executable (iLONLicenseGen.exe) that provides a user interface for entering the values
used to generate an FPM license.

e A sample license generator configuration file (an XML file named
iLONL.icenseGenValuesSample.xml) that demonstrates the structure of the i. LON License
Generator user interface and provides sample pre-defined values.

e A sample security DLL file (LicenseSecurityHMACMDS5.dIl) that takes the values entered in the
i.LON License Generator user interface and creates an FPM license.

To construct your FPM licensing tool, you create a license values file that defines the default values for
the user interface of the i.LON License Generator, and you create a security DLL file named
LicenseSecurity.dll that takes the values entered in the i.LON License Generator user interface and
creates an FPM license. If you do not have the resources to build the security DLL file, you can
re-name the sample DLL file to LicenseSecurity.dll. This file provides a standard HMAC-MDS5 digest
security algorithm.

Once you create the license manager file (ILONLicenseGenValues.xml) and the security DLL file
(LicenseSecurity.dll), and you have built a release version of your licensed FPM application, you can
open the i.LON License Generator and begin using it to create FPM licenses.

Creating a License Generator Configuration File

The i.LON License Generator requires an XML configuration file named
iLONL.icenseGenValues.xml that defines the default values for the properties in the user interface. A
sample configuration file named “iLONLicenseGenValuesSample.xml” is provided in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. The sample file displays the XML
structure of that the i.LON License Generator requires. In addition, the sample configuration file
provides an example of the default values that you can define for your FPMs.

You can create your own default values using the sample configuration file as a guide, or you can copy
and rename the sample file to iLONLicenseGenValues.xml and modify the values to fit your
company and your FPMs.

The configuration file includes a <PredefinedFeatures> element in which you define a <Company>
element. Within the <Company> element, you define (1) your company’s properties such as name,
and LonMark ID, and (2) one or more features, the properties for each feature such as name, algorithm,
and secret key, and the pre-defined values for the properties. The following table lists the company
and feature properties you define within the <PredefinedFeatures> element. An example that

138 Creating FPM Application Licenses

demonstrates the structure of the <PredefinedFeatures> element and the properties you can define in it

is provided after the table.

Property

Description

Company

CompanyName

Specify the name of your company.

ShortCompanyName

Specify the name of your company or an abbreviated name. Legal
characters are those that would be legal for file names on the
SmartServer. You should only use letters, numbers or the underscore
character. Do not include spaces in this name.

The ShortCompanyName will appear at the beginning of the name of
your FPM license file.

LonMarkID

Specify your company’s LONMARK manufacturer identifier (MID).

The LonMarkID will appear after the ShortCompanyName in the
name of your FPM license file. If you do not have a LONMARK ID,
you can use an arbitrary number.

This field prevents license naming collisions from occurring because
of a common company name. It is useful for scenarios in which a
large company has multiple divisions that each have their own
LONMARK ID.

Company/Feature

FeatureName

Specify a descriptive name that uniquely identifies the FPM. For
example, you can specify “FPM Math Functions” or “FPM HVAC
Controller” for the math and HVAC examples used in this guide.

The specified value will be listed in the Feature Name field of the
FPM application license.

The first feature you specify in the configuration file and the
specified default values of its associated properties will appear in the
i.LON License Generator by default.

The values that appear in the i.LON License Generator are based on
the selected FeatureName.

ShortFeatureName

Specify a condensed or abbreviated name for your FPM. The same
constraints and recommendations about legal characters from the
ShortCompanyName also apply to this field.

For example, you can specify “Math” or “HVAC” for the math and
HVAC examples used in this guide.

The ShortFeatureName will appear after the LonMarkID in the name
of your FPM license file.

AlgorithmIndex

Specify an index corresponding to an algorithm index in your license
security source file. This index determines which security algorithm
in the security DLL file is run. You will probably only have one
algorithm, in which case an index of 0 or 1 would be appropriate.

The specified AlgorithmIndex will appear in the Secure Algorithm
Index field of the i.LON License Generator when its associated
feature is selected in the Feature Name field.

The sample security DLL file uses an algorithm that has an index of
0. If you plan on using the sample security DLL file, you must
specify 0 in the AlgorithmIndex property or else the i.LON License
Generator will not be able to generate an FPM license. See Building
the Security DLL File for more information on using algorithm

i.LON SmartServer Freely Programmable Module User’s Guide

139

indexes.

LicenseType

Specify the type of license to be issued. The default LicenseType is
“Unlimited”. You may create your own license type designations.
For example, you could specify a “Demo” license if you plan on
modifying your FPM application so that the license provided to a
customer expires after a specified trial period such as 30 days.

LockType

Specify the type of lock used to uniquely identify a customer’s
SmartServer. You can specify one of the following four lock types:

e MACID. The unique 12-digit hexadecimal Ethernet MAC
address assigned to each SmartServer. Using the MACID
ensures that the FPM license you are issuing is associated with a
specific SmartServer. This is the recommended lock type.

e LUID. Any one of the sixteen unique 12-digit hexadecimal
Neuron IDs assigned to each SmartServer. Using the LUID
ensures that the FPM license you are issuing is associated with a
specific SmartServer. You can use this lock type instead of the
MACID.

e User. Some user-defined identifier.

¢ None. No lock type is used.

Options

Optionally, you can enter any text in this property. For example, you
could specify the length of a trial period of an FPM, such as “D- 30”
for 30 days.

SecretKey

Specify a unique hexadecimal string that functions as the secret key
for the feature. The secret key is used by the security DLL file in
calculating the unique license key for the FPM license. You may
specify a different secret key for each feature. The length of the
secret key must be appropriate for the security algorithm used.

<PredefinedFeatures>

<Company>

<CompanyName>0ur Corporation</CompanyName>
<ShortCompanyName>0ur Company</ShortCompanyName>
<LonMarkld>0</LonMarkld>

<Feature>

<FeatureName>FPM HVAC Controller</FeatureName>
<ShortFeatureName>HVAC</ShortFeatureName>
<Algorithmlndex>0</Algorithmlndex>
<LicenseType>Unlimited</LicenseType>
<LockType>MACID</LockType>
<SecretKey>5BD6217EA180AA116A51AAD1DOA6GDD1E</Secretkey>

</Feature>
<Feature>

<FeatureName>FPM Math Function</FeatureName>
<ShortFeatureName>Math</ShortFeatureName>
<Algorithmlndex>0</Algorithmlndex>
<LicenseType>Unlimited</LicenseType>
<LockType>MACID</LockType>
<SecretKey>22222222222222222222222222222222</SecretKey>

</Feature>

</Company>

</PredefinedFeatures>

140

Creating FPM Application Licenses

Creating a Security DLL File

The i.LON License Generator requires a security DLL file named LicenseSecurity.dll that implements
a specific security algorithm. The security algorithm enables you to publish unique digital signatures
for your FPM licenses. You can build your own LicenseSecurity.dll file, or you can use the sample
security DLL file provided by Echelon. The following sections describe how to build the security
DLL file and how to use the provided sample security DLL file.

Building the Security DLL File

To build your own security DLL file, you can use the sample license security file provided with the
i.LON SmartServer Programming Tools (trial or full version). This C++ source file,
LicenseSecuritySample.cpp, is located in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. It documents the proper interface
to be used to create the security DLL file.

In this sample, the GeneratelL icenseKey () routine is called when the Create License button in
the i.LON License Generator is clicked. This routine does the following:

1. Receives the following seven parameters - algorithmlndex, pText, textlLen,
pSecretKey, keylLen, ppLicenseKey, and pLicenseKeyLen.

o algorithmlndex is the value from the Algorithm Index field of the i.LON License
Generator.

e ptext is a pointer to a character array in which the text entered in the Issuing Company
Name, Feature Name, License Type, Lock Type, and Lock ID fields of the i. LON License
Generator is stored.

e textLen is an integer that stores the length of the text referenced by ptext.

e SecretKey is a pointer to a byte array in which the binary value of the text entered in the
Secret Key field of the i.LON License Generator is stored.

o keylen is an integer that stores the length of the byte array referenced by SecretKey.

e ppLicenseKey is a pointer to a pointer to byte array where the returned license key will be
stored.

e pLicenseKeylen is a pointer to an integer that will store the length of the returned license
key.

2. Checks the algorithm index passed in from the i.LON License Generator. The algorithm index
determines which security algorithm is run. You can have multiple algorithm indexes to handle
different features or situations. This sample includes one security algorithm that is run when the
algorithm index is 0.

3. Executes the specified security algorithm. This algorithm must use the pText, textLen,
pSecretKey, and keyLen parameters and generate the license key.

Note: C source files for open source implementations of the MD5 and HMAC-MD5 digest
algorithms are included in the LonWorks\iLON\Development\Licensing folder. You can use
these source files to implement your security algorithm for the security DLL and the FPM. You
can use other available security algorithms such as SHA-1, SHA-256, or DES in your security
DLL and FPM.

Echelon makes no recommendation about the suitability of any of these algorithms. The
algorithms are provided for demonstration purposes only.

If you use the provided source files, you may include them in your security DLL source file using
the #include statement, or you may compile them separately. In either case, you should define

i.LON SmartServer Freely Programmable Module User’s Guide 141

the C macro DONT _TRANSLATE NAMES before each of these files. The names of the routines
to be used all begin with “LICMGR_”

If you use the supplied implementation of the HMAC-MD5 digest algorithm, you can optionally
turn it into a non-standard algorithm by adjusting the pre-defined HMAC__IPAD_XOR_VALUE and
HMAC_OPAD_XOR_VALUE values. If you want to modify the pad XOR values, you must define
them as one-byte hex values. Creating a non-standard algorithm may be useful if you want to
further protect your FPM application in the event the secret key defined for your FPM is
compromised. However, this theoretically may reduce the strength of the digest.

Echelon makes no recommendation regarding the use of this feature.

4. Returns the license key to the i.LON License Generator, which converts the license key to ASCII
text and then generates the . XML file to be supplied to your customers. You must set the
expression *ppLicenseKey to point to the memory area containing the binary license key (the
“digest”) generated by your security algorithm, and you must set the expression
*pLicenseKeyLen to the byte length of the binary license key.

Using the Sample Security DLL File

If you do not have the resources to build the security DLL file, you can use the sample pre-built
security DLL file provided with the i.LON SmartServer Programming Tools (trial or full version).
This executable file, LicenseSecurityHMACMDDS.dII, is located in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder.

To use this file, you just rename it to “LicenseSecurity.dll”. This file implements a standard
HMAC-MDS digest algorithm from “open source” code. The source code for this sample DLL is in
the file LicenseSecurityHMACMDO5.cpp, located in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. Note that this sample security
algorithm is not guaranteed to be suitable for any particular scenario.

The user is solely responsible for selecting a security algorithm in the security DLL file and in
the FPM application. Echelon makes no recommendations regarding the suitability of any
security algorithm.

Enabling License Validation in an FPM Application

You need to modify your FPM application so that it can check whether a customer’s SmartServer has a
valid license for running your FPM. This entails writing a separate license validation routine in the
source file of your FPM (.cpp extension). Your license validation routine must perform two major
tasks: (1) verify that the Lock ID (MACID, LUID, or other user-defined lock type) specified in the
FPM license file matches the one on the customer’s SmartServer, and (2) verify that the license key in
the FPM license file is valid. The FPM license is the .xml file you created with the i.LON License
Generator as described in Creating FPM Licenses in this chapter. This file must be installed in (or
under) the root/config/license folder on the SmartServer flash disk.

To verify the lock ID, your license validation routine must call the built-in license manager on the
SmartServer and provide it the license ID (Company Name and Feature Name) specified in the FPM
license file, and the file path of the FPM license relative to the root/config/license folder on the
SmartServer flash disk. The license manager will then check that the Lock ID in the FPM license
matches the one on the SmartServer (this is referred to as the Node Lock Check). The license manager
then returns the result of the Node Lock Check and the data in the FPM license file to your license
validation routine. The license data is returned as a structure that contains the license type, lock type,
lock ID, options, license key, and the length of the license key.

142 Creating FPM Application Licenses

FPM

.cpp file i i

(-cpp file) iLONSystem Node Lock FPM License
(.xml file)

UEsiEs License Check
Validation >
Routine() Kandoey

A 4

Result of Node
Lock Check
and License

Data

To verify that the license key in the FPM license file is valid, your license validation routine needs to
first check the results of the Node Lock Check. If the SmartServer passed the Node Lock Check, your
license validation routine should then check the FPM license data; otherwise, it should log a license
error. To check the FPM license data, your license validation routine must call the same security
algorithm you used to create the FPM license, and it must provide the security algorithm (1) the license
data returned by the license manager and (2) the secret key assigned to the FPM in the license
configuration file (iILONLicenseGenValues.xml). The security algorithm then calculates a license
key. The license validation routine should then compare the license key stored in the FPM license file
to the one just calculated. If their sizes and values match, the license validation routine should accept
the FPM license; otherwise, it should log a license error.

FPM
(.cpp file)

Accept FPM

License (eanes

Key Check

License Keys
Match?

License
Validation
Routine()

Log a License
Error

Log a License
Error

Overall, to enable license validation in your FPM application, you perform the following steps:

1. Insert #include directives for the required file LicenseMgr.h and optionally the security
algorithm files LicMgrMd5.c and LicMgrHMacMd5.c. In addition, you must redefine the name
translations the macros defined at the beginning of the LicMgrMd5.c and LicMgrHmacMd5.c
files.

2. Declare data variables for the FPM license status and for the secret key assigned to the FPM.
3. Create a license validation routine.
4. Write the license validation algorithm to do the following:

a. Define local variables for the data to be passed to and returned by the license manager and by
the security algorithm, declare that the FPM is not licensed, and declare a license structure for
the license data to be passed to and returned by the license manager.

b. Call the method in the i.LON License Manager that performs a Node Lock Check and returns
the node lock status and license data.

c. Check the results of the Node Lock Check. If the SmartServer passes the check, call a
security algorithm that calculates the license key based on the license data. Compare the
license key stored in the license file to license key returned by the security algorithm. Based
on the results of the license key evaluation, validate the FPM license, or log a license error.

5. Implement some mechanism in your FPM application that results in the license validation routine
being called. You are solely responsible for implementing this mechanism.

6. Compile your licensed FPM application.

i.LON SmartServer Freely Programmable Module User’s Guide 143

144

Tips for Securing your Licensing Scheme:

You can implement a number of security measures in your licensing scheme to help protect your FPM
application from unauthorized use or piracy. The examples provided in this section demonstrate some
of these measures, which are designed to force anyone attempting to break the licensing scheme to
disassemble your object code and reverse-engineer the algorithms. To test the strength of your
licensing scheme, you should attempt to break it once you have completed it. This will help you
identify any weaknesses in your licensing scheme.

Note that there are instances in the examples where a number of techniques can be used in
implementing a security measure, but no specific recommendation is made as to which technique is the
best. This is because it is not clear which technique provides the best security. Furthermore, if every
customer follows the same technique, the overall security of the FPM applications being manufactured
is weakened.

Once you enable license validation in your FPM application and build your FPM, it is recommended
that you remove the internal-only symbols from your FPM application. This obscures the location of
the routines and data in your FPM application. The examples in this section assume that you will do
this; therefore, the provided security functions and data are declared as “static”. Note that if you intend
to remove the internal-only symbols, some of the techniques described in this section are optional (e.g.,
translating names via macros); however, it is recommended that you still implement them. This is
because the techniques provide a level of security in the event the removal of the internal-only symbols
is not performed. For instructions on how to remove the internal-only symbols from your FPM
application, see Building the Release Version of a Licensed FPM Application later in this chapter.

Note that no software protection scheme is completely secure. Individuals with the resources to break
your licensing scheme may be able to eventually do so.

Step 1: Inserting Include Directives and Macro Definitions

The first step in enabling license validation in your FPM application is to insert #include directives
for the files that contain the methods to be called by your FPM application. The only file that you
must include is LicenseMgr.h. Optionally, you will need to include LicMgrMd5.c if you are using
the supplied MD3 security algorithm in your FPM license validation routine, and both LicMgrMd5.c
and LicMgrHMacMd5.c (in that order) if you are using the supplied HMAC-MD3 security algorithm.

Note that if you include the LicMgrMd5.c and LicMgrHMacMd5.c files, you must provide new
definitions for the name translation macros defined at the beginning of those files. These macros begin
with “LICMGR_” and by default are defined as “CHANGE_ME!” (an intentionally illegal value).

You can redefine the macros directly in the files, or simply copy the #deFine statement for each one
and put the new definitions in the source file (.cpp extension) or header file (.h extension) of your
FPM application. The new definitions must be inserted before the included source files.

The LicMgrMdb5.c file contains six macros for which you need to supply definitions, and the
LicMgrHMacMd5.c file contains one macro. These macros redefine the names of the actual security
algorithm routines to obscure them from malicious attempts to bypass your licensing. To maximize
the protection provided by this mechanism, the name definitions should look related to your FPM
application, but they should obscure their actual functions.

It is also recommended that you obscure your own symbol names. All the symbols in the provided
examples that use all upper-case are intended to be defined as macros, with the true name being
intentionally misleading.

To insert the #include directives in your FPM application, do the following.

1. Start the i.LON SmartServer Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer Programming Tools, and then click i.LON SmartServer
Programming Tools. The i.LON SmartServer Programming Tool opens.

2. Inthe C/C++ Projects view, expand the FPM project folder if the header file (.h extension) for
your FPM application is hidden.

Creating FPM Application Licenses

3. Click the header file. The header file view opens to the right of the C/C++ Projects view.
4. Insert the following include directives in the “includes go here.” section of the header file.

// Required include statement. Finds FPM license and performs
// node lock check.
#include "LicenseMgr.h"

// Define name translations for macros in MD5 digest if not
// already defined in file.

#define LICMGR_MD5Init <name>

#define LICMGR_MD5Update <name>

#define LICMGR_MD5Final <name>

#define LICMGR_MD5Transform <name>

#define LICMGR_MD5Encode <name>

#define LICMGR_MD5Decode <name>

// Optional include statement(but required if using MD5 or
// HMAC-MD5). Uses MD5 digest to generate a license key.
#include "LicMgrMd5.c"

// define name translation for macro in HMAC-MD5 digest if not
// defined in file.
#define LICMGR_hmac _md5 <name>

// Optional include statement(required if using HMAC-MD5).
// Uses HMAC-MD5 digest to generate a license key
#include "LicMgrHmacMd5.c"

@ UFPTHWAC Cantraller.cpp *FPTHYACCantraller. b ¥ = 08
fe—————————————— ~
f4 includes go here.
fe——————————————

#include <string:>

#include "3tandard MVT.h"
#include "FPM Varisble.h"
#include "FPM Starter.h”

|#incluﬂe "LicenseMgr.h"

define LICHGR NDoInit systietx_a
define LICHGR MDSUpdate systGetx b
define LICHGR MD5Final systGetx o
define LICHGR MDSTransform systGetx d
define LICHGR MDSEncode systGetx e
define LICHGR MDSDecode systGetx £
include "LicMogrMdS.c™

#iderine LICHGR hwmac mds systeetx o
Hinclude "LicHgrHmwmscMdS.c™

Step 2: Declaring Data Variables

After you insert the include directives, you need to declare data variables in the routine that are used to
store the results of the Node Lock Check and the secret key assigned to the FPM. To declare the data
variables, follow these steps:

1. Under the FPM project folder in the C/C++ Projects view, click the source file (.cpp extension)
for your FPM application. The source file view opens to the right of the C/C++ Projects view.

i.LON SmartServer Freely Programmable Module User’s Guide 145

2. Insert code similar to the following somewhere after the FPM constructor:

// Tlag defining whether FPM license has been validated
static int FPM_IS LICENSED; // initialized at run-time

// Tlag indicating whether FPM license has been checked
static bool FPM_CHECKED = FALSE;

// secret key for MD5/HMAC-MD5 algorithms

static unsigned char FPM_KEY_PART_1[MD5 DIGEST_LEN] =
{0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,
Ox<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>,0x<hex>};

Tip: You could alternatively split the secret key into several pieces and put them back together in your
validation algorithm. You could also put the key definition (or some of its pieces) inside your validation
routine as a local variable. If a status variable is only accessed in a single routine but it needs to retain its
value outside the routine, it may be placed inside the routine as a static local variable.

‘ﬂ *UFPTHYAC Controller.cpp X IE LFPTHYAC Controller.h — O

0
MsSNo—_-—— —
f4 CUFPTHVACController [CONITRUCTOR / DE3TEUCTOR]

Jf —————————————
-,.","declare atatic wvariables for FPM License Validation
static int FPM T3 LICENSED:

static bool FPM CHECKED = FAL3E:

S Secret key for FPM HVACController = 16 hex bytes

/Y BEDGE217EAISOAA]l1GAS1AADIDSARDDIE

f¢ key is split into two arrays of § hex hytes

/f key partz are re-ordered

z=tatic unsigned char FPH_KEY_PILRT_I[HDS_DIGEST_LEN,#‘Q] S
{0X6A,0x51,0xAL, OxD1,0xD9, OxAE, 0xDD, 0x1E} ;

static unsigned char FPM KEY PART O[MDS DIGEST LEN/2] =
{0x5E,0xD6,0x21,0=x7E, Oxb]l, O0x50,0xA4, 0511} ; 3
< >

Step 3: Creating the License Validation Routine

After you declare the static variables, you need to create a license validation routine. You first need to
add your routine in the header file (.h extension) of your application. You can then place your license
validation routine anywhere in your FPM application after the static variables you declared in step 2.

To create your license validation routine, you do the following:
1. Click the tab for the header file view.

2. Locate the Implements the user functional ity section in the header file, and then
insert the following code under the public: declarations.

void <FPM license validation routine name>();

146 Creating FPM Application Licenses

3.

4] UFPTHYACController.cpp

Jf e
Iy Implements the user functionality

Jf e ———————
public:

44 License Validation
void FPM CHECE(];

/4 Initialization and Cleanup
void Initialize():
void Shutdown():

/4 User implemented methods
void Work():

void OnTimer () ;

Sfwoid OnMyTimer ()

Tips:

® You should obscure the name of the license validation routine (and other symbols shown in
all capitals) to help secure your FPM application. To do this, define a macro with the same
name as the symbol and then specify a name translation for it. For example, the following

macro could be defined for the license validation routine created in step 2.

#define FPM_CHECK anotherFPMfunction

¢ You can alternatively create your license validation routine as a static file-scope routine. This
enables the symbol name to be removed from the final object code module. Symbols for C++
class methods are always defined as global—even if they are a private class method—so that
they cannot be as easily removed from the object code module. However, if you have a lot of
class methods, using an intentionally misnamed method placed among the other methods may

be sufficient.

Click the tab for the source file view. Insert the following code before or after the

Initialize() routine:

void CUFPT<FPM Name>::<FPM license validation routine name>()

{
}

B *UFPTHYACContraller.cpp X [R] *UFPTHYACCantraller.h =08

i o
/¢ FPM License Validation Routine|)

void CUFPTHVACController::FFPM CHECE()

{

i

e

Sf CUFPTHVACController::Initislize()

/¢ hdd anything that is necessary in order to get the module p

I

/¢ Thi= routine i=s called once, while starting up the module

rvoid CUFPTHVACController::Initiali=ze()

i

/¢ ewamples for setting up default/user-defined timer callback
hTimerl = CreateTimer (FPM_TF_ONETIME, 10000); // calls th

/¢ hTimerz = CREATE_TIMER(FFM_TF_REFPEAT, 3000, CUFPTHVACCont

i.LON SmartServer Freely Programmable Module User’s Guide

147

148

Step 4: Writing the License Validation Algorithm

You need to write a license validation algorithm that (1) verifies that the Lock ID (MACID, LUID, or
other user-defined lock type) specified in the FPM license matches the one on the customer’s
SmartServer, and (2) verifies that the license key in the FPM license file is valid.

To do this, your license validation algorithm must call the method in the i. LON License Manager that
finds and parses an FPM license and performs a Node Lock Check. Your license validation algorithm
then must evaluate whether the SmartServer passed the Node Lock Check. If the SmartServer passed
the Node Lock Check, your method needs to calculate a license key and check whether the license key
stored in the FPM license file matches the calculated license key. Your method must calculate a
license key by calling the exact same security algorithm used in the License Generator security DLL
and providing it the license data returned by the i.LON License Manager and the secret key defined for
your FPM. The secret key for your FPM is stored in the variables that you declared in step 2.

You probably will only want to run the full license validation process once, so before proceeding you
should check a flag (e.g., FPM_CHECKED), and you should set the flag somewhere in your license
validation algorithm to indicate that the license has been checked.

Your license validation algorithm must declare local variables for the data to be passed to and returned
by the license manager and by the security algorithm. Your license validation algorithm must specify
the CompanyName and FeatureName properties defined in your FPM license file, and it must specify
the file path of your FPM license file.

Verifying the Lock ID

To write your license validation algorithm so that it verifies the Lock ID of a SmartServer, you do the
following:

1. Check to see if you have already run the license check. For example:

if (1FPM_CHECKED)
{

2. Set a flag to indicate that your license validation algorithm has been called. This code does not
need to be at the beginning. For example:

FPM_CHECKED = TRUE;

3. Declare the local variables for the data to be passed to and returned by the license manager and by
the security algorithm. For example:

//data passed to and returned by license manager
LicMgrTaskCallBlock taskCallBlock;
LicMgrLicenseld licenseld;

LicMgrLicenseData *pLic;

//data passed to and returned by security algorithm
unsigned char secretKey[MD5 DIGEST_LEN];
unsigned char digest[MD5 DIGEST_LEN];

4. Enable the License Manager on the SmartServer to check for a valid FPM license. To do this, you
store the CompanyName and FeatureName properties defined in your FPM license file in the
CompanyName and FeatureName fields of the LicMgrLicenseld object. For example:

licenseld.szCompanyName
licenseld.szFeatureName

"Your Company Name'';
"Your Feature Name';

Using the HVAC Controller FPM for example, the Company Name property would be “Our
Corporation”, and the Feature Name would be “FPM HVAC Controller”. See Creating a License

Creating FPM Application Licenses

Generator Configuration File for more information on the CompanyName and FeatureName
properties.

5. Declare a License Manager control structure, then set the license file path and the license ID
fields. The file path field corresponds to the path of the FPM license file relative to the
root/config/license folder on the SmartServer flash disk, and the name of the FPM license file.
The default file name of an FPM license is <ShortCompanyName><LonMarkID>
<ShortFeatureName>.xml. For example:

//declare license manager control structure
memset(&taskCallBlock, 0, sizeof(taskCallBlock));

//specify the license file path and license ID
taskCal IBlock.pFilePath = "YourFilePath.xml";
taskCalIBlock.pLicenseld = &licenseld;

Using the FPM license file of the HVAC Controller, for example, the file path property would be
“OurCompanyOHVAC.xml”. If you chose to place your licenses in a subfolder of the
/root/config/license folder, the path name must contain that subfolder name, too (but not
/root/config/license). For example, “OurCompanyFolder/OurFileName.xml”. See Creating a
License Generator Configuration File for more information on the Short CompanyName,
LonMark ID, and ShortFeatureName properties.

6. Call the method in the i.LON license manger that finds the license and performs a node lock
check. For example:

LICMGR_TaskCall_FindLicense(&taskCallBlock);

The following code demonstrates the lock ID of a SmartServer being checked by the license validation
algorithm:

B *UFPTHYACCartralier.cpp X UFRTHYACContraller, b -0

/f FPM License Validation Routine() ~

void CUFPTHVACController::FPHM CHECK()
i
Ff Zet FPM_CHECEED flag to TRUE so method is called onee
if (!FPM_CHECKED)
{
FPM CHECEEDL = TRUE:
}

ff declare local varisbles to be passed to and returned
/4 by License Manager and Security Algorithm

LicHMgrTaskCallElock taskCallElock:
LicMgrLicenseld licenseId:
LicMgrLicenseData *pLic:

unsigned char secretHey[MDS_DIGEIT LEN]:
unsigned char digest[MDS_DIGEST LEN]:

/4 Check for a wvalid license.
licenseld.szCompanyMName = "Your Company MNeame'™;
licenzeld.szFeatureName = "Your Feature Name™:

/¢ Use dedicated license file

memset (£taskCallBlock, 0, sizeof(taskCallBlock)):
taskCallBlock.pFilePath = "YourFilePath.xml™;
taskCallBlock.pLicenselId = £licenseId:

f/ Macro for indirect task call.
LICHMGR_TaskCall FindLicense (&taskCallElock):

i.LON SmartServer Freely Programmable Module User’s Guide 149

150

Verifying the License Key

To write your license validation algorithm so that it verifies the license key in the FPM application
license file, you do the following:

Check the results of the Node Lock Check. For example:

if (taskCallBlock.sts == LicMgrStsOK)
{

If the SmartServer passes the check, get the secret key defined for your FPM in a block of
memory. If you split it into pieces, you must assemble them here. For example:

memcpy(secretkKey, FPM_KEY_PART_O, sizeof(FPM_KEY_PART_0));
memcpy (&secretKey[sizeof(FPM_KEY_ PART _0)], FPM_KEY_PART 1,
sizeof(FPM_KEY_PART_1));

In this example the secret key is the 16-byte hexadecimal string appropriate for the HMAC-MD5
algorithm that you defined in step 2. See Creating a License Generator Configuration File for
more information on the SecretKey property.

Call your security algorithm to calculate a license key. This must be the same security algorithm
used in the License Generator DLL. The security algorithm returns a license key (digest) that is
calculated from the license manager control structure data returned by the license manager, the
length of the license manager control structure data, the secret key defined for your FPM, and the
length of the secret key. For example:

LICMGR_hmac_md5((unsigned char*)pLic->szHashText,
strlen(pLic->szHashText), secretKey, 16, digest);

Compare the length and content of the license key stored in the license file to that of the license
key returned by the security algorithm. For example:

if ((pLic->licenseKeyLen == MD5 DIGEST LEN) &&
(memcmp(pLic->licenseKey, digest, MD5 DIGEST LEN) == 0)){

Optionally, you can evaluate any other data in the license manager control structure data besides
the licenseKey and licenseKeyLen fields. The license manager control structure contains all the
data included in the license file, split into the following fields:

e szHashText. A pointer to the text over which the security algorithm runs. It combines a
number of other fields.

o szLicenseType. A pointer to the text for the lock type (e.g., “MACID”).
e lockType. Anenum value indicating the lock type.
o szLocklId. A pointer to the text of the lock ID.

e lockld. A pointer to the converted binary bytes of the lock ID if the lock type is “MACID” or
“LUID”. If the lock type is not “MACID” or “LUID” or if this field is not used, this field is
NULL.

e szOptions. A pointer to the text of the options field, if any.

e licenseKey — A pointer to the binary bytes of the license key. Used in step 4.
e licenseKeyLen — The length in bytes of the licenseKey field. Used in step 4.
e szFullLicenseText. A pointer to the complete XML text of the license.

o szUserLicenseText. A pointer to the beginning of the (optional) user section of the XML
license text.

Note: Pointers to strings will not be NULL if they are not used, instead some may point to empty
strings.

Creating FPM Application Licenses

6. Based on the results of the license key evaluation, validate the FPM license, or log a license error.
You can use a value other than 1 and later check for that specific value instead of using a boolean
zero/non-zero check. For example:

FPM_IS_LICENSED = SOME_MAGIC_NUMBER;

else

taskCallBlock.pGeneric =
(void*)"FPM HVAC license key is invalid/n”;
LICMGR_TaskCall_LogLicenseError(&taskCallBlock);
}

7. 1T the SmartServer did not pass the Node Lock Check, log a
license error. For example:

}else

{
taskCalIBlock.pGeneric =

(void*)"FPM HVAC license invalid or not
found/n™;
LICMGR_TaskCall_LogLicenseError(&taskCallBlock);

}

8. Free any license data stored in memory. For example:

LICMGR_TaskCall_FreelLicenseData(&taskCallBlock);
}

The following code demonstrates the license key of an FPM application license file being checked by
the license validation algorithm:

B *UFPTHYACContraller.cpp X UFPTHYACContraller. h =g

A
ffCheck if i.LON passed Node Lock Check
if (taskCallElock.sts == LicHMgr3tcsOE)
i
/¢ Copy the key in parts
wencpy (SecretKey, FPM KEY PART 0, sizeof (FPM KEY PART 0)):
memcpy | &SecretKey[sizeof (FPM_KEY PART 0)], FPM KEY PART 1, sizeof (FFM_KEY PART 1))
ffoall security algorithm
LICHGE hmwac wd5 | (unsigned char?®)plic->szHashText, strlen(plic->szHashText),
secretKey, 16, digest):
J/compare license keys
if ((plic-»licenseKeylLen == MD5_DIGEST_LEN) &&
(memcwp (pLic->licensekey, digest, MD5_DIGEST LEN) == 0]]
i
FPM IS _LICENSED = SOME MAGIC NUMEBER:
printf ("FFFFPM license validated*#%hwyn™):
}
else
i
taskCallBlock. pGeneric =
(roid*) "FPM HVAC license key is inwvalidin™:
LICHGR_TaskCall LogLicenseError (staskCallBlock):
i
}else
{
taskCallElock.pGeneric =
(void*) "FPM HVAC license inwvalid or not foundin™;
LICHGR_TaskCall LogLicenseError (&taskCallBlock):
|
// free the license data, if any
LICHGR TaskCall FreeLicenseData(&taskCallElock): b
< b

i.LON SmartServer Freely Programmable Module User’s Guide 151

Step 5: Implementing the License Validation Call Mechanism

After you have written your license validation algorithm, you need to implement some mechanism in
your FPM application that results in the license validation routine being called. This can be done in a
variety of ways using the pre-defined code and routines in your FPM application; however, you are
solely responsible for designing and implementing this mechanism.

Step 6: Compiling the Licensed FPM Application

Once you have created the license validation call mechanism, you can compile your licensed FPM
application. To compile your FPM, click File and then click Save. If your code has any errors, they
will be listed with any warnings in the Problems view at the bottom of the document window. You
can click on the errors and warnings listed in this view to debug your FPM. If the build is not
performed, click Project and then click Build Project. You can then click Project and select Build
Automatically so that your FPM applications are built automatically when you save them.

Building the Release Version of a Licensed FPM Application

After you enable license validation in your FPM application and compile it, you can build the release
version of your FPM application that you will make available to customers. Building the release
version entails removing the internal-only symbols from your FPM executable module (.app
extension). Stripping the internal-only symbols greatly enhances the security of your licensing
scheme, as it obscures the location of the routines and data in your code.

To remove the internal-only symbols from your FPM executable module, follow these steps:

1. Open a Command Prompt window.

2. At the command prompt, change the directory to the path of your FPM executable module.
For example, you type the following (without the break):

cd C:\LonWorks\iLON\Development\eclipse\workspace.fpm\
9000010000000000[3] -UFPTHVACControl ler/Release

3. Use the set path command to set the path to the directory containing the GNU strip utility
(strip.exe). This utility is located in the
C:\LonWorks\iLON\Development\eclipse\plugins\com.echelon
.eclipse.ilon100.fpm_0.9.0\compiler\3.3.2-vxworks-6.2\x86-win32\i586-wrs-vxworks\bin
directory.

For example, you type the following (without the breaks):

set path=%path%;C:\LonWorks\iLON\Development\eclipse\plugins\
com.echelon.eclipse.ilonl00.fpm_0.9.0\compiler\3.3.2-vxworks-
6 .2\x86-win32\1586-wrs-vxworks\bin

4. Use the GNU strip command to remove the internal-only symbols from your FPM executable
module. To do this, type the following command:

strip --strip-unneeded —target=el32-big modulename

where modulename is the name of your FPM executable module in the following format:
<company program ID>.UFPT<FPT Name>.app.

For example, you type the following (without the break):

strip --strip-unneeded --target=elf32-big
#9000010000000000[3] -UFPTHVACController._app

5. Optionally, you can use the GNU nm command verify that the internal-only symbols have been
removed from your FPM executable module. To do this, type the following command:

nm —-numer ic-sort modulename > someFi leName. txt

152 Creating FPM Application Licenses

For example, you type the following (without the break):

nm --numeric-sort #9000010000000000[3].UFPTHVACController.app >
noSymbols. txt

6. Use a text editor to open the file you created in step 5. You should observe that there are no
internal-only symbols in the file. Internal-only symbols are denoted by a lower-case single letter
in the second field (e.g., “t”, or “d”).

Creating FPM Application Licenses

Once you create a license manger file (iLONLicenseGenValues.xml) and a security DLL File
(LicenseSecurity.dll), and place these files in the same folder as the License Generator executable
(iLONL.icenseGen.exe), you can open the i.LON License Generator and begin using it to create FPM
application licenses.

When you open the i.LON License Generator, you will observe that the first pre-defined feature
specified in the configuration file and its associated default values appear in the dialog. You can select
other pre-defined features from the Feature Name list and their specified default values will appear in
the dialog.

To create FPM licenses using the i.LON License Generator, follow these steps:

1. Open the i.LON License Generator. To do this, click Start, point to Programs, point to Echelon
i.LON SmartServer Programming Tools, and then select the License Generator folder. The
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder opens. Double-click the
iLONL.icenseGen.exe file. The i.LON License Generator opens.

i.LON SmartServer Freely Programmable Module User’s Guide 153

154

@ i.LON License Generator

lzzuing Company Mame:

Our Corporation ~

Feature Mame:

FPk HWAL Controller w

Licensze Type:

Unlirnited v
Lock Tupe: Lack [D:
MACID w
Options:

v
Secret Key:
SBDE217EATB0AA1 168514401 D94EDDIE -

Secure Algarithm [ndex:

a0

Custarner Infarmation:

By default, the first pre-defined feature specified in the license configuration file
(iLONLicenseGenValues.xml) and its associated default values appear in the dialog.

In the Feature Name property, select the FPM to be licensed from the list of the FPMs defined in
the <PredefinedFeatures/Company/Feature/FeatureName> tags in the license configuration file.
The specified default values of the properties associated with the selected FPM appear in the
dialog.

In the License Type property, select the type of FPM license being issued. Typically, you will
select Unlimited, but you can select Demo if you defined such property in the license
configuration file and you plan on modifying your FPM application so that the license provided to
a customer expires after a specified trial period such as 30 days.

In the Lock Type property, select the type of unique SmartServer identifier you requested from
the customer. You should request the MACID (Ethernet MAC Address), but you can request the
LUID (Neuron ID) or some other user-defined SmartServer identifier if you defined such property
in the license configuration file.

The MACID and LUID are accessible from the SmartServer Web pages. You can help customers
locate these identifiers using the SmartServer Web pages by providing the following instructions:

e To locate the MACID (Ethernet MAC Address) from the SmartServer Web pages, right-click
the local SmartServer, point to Setup, and then click System Info (alternatively, you can click
Setup and then click System Info). The Setup — System Info Web page opens. The
Ethernet MAC Address is the first property listed under the Ethernet header.

Creating FPM Application Licenses

e To locate the LUID (Neuron ID) from the SmartServer Web pages, click Driver at the top of
the tree in the sidebar (left) frame, expand the Net network, expand the LON channel, and
then click any internal SmartServer device, which have “(Internal)” appended to their names.
The Setup — LON Device Driver Web page opens. The Neuron ID is the first property
listed under the Identification Property header.

6. 1Inthe Lock ID property, enter the unique SmartServer identifier provided by your customer
(MACID, LUID, or other user-defined identifier). If you are entering a MAC ID or LUID, you
can enter the 12-digit hexadecimal number as a single string, or you can separate the hex digit
pairs with dashes, spaces, colons, semi-colons, periods. For example, you can enter a MACID as
00D071020A18, 00-D0-71-02-0A-18, or as 00 DO 71 02 0A 18. If you enter an incorrect Lock
ID, a warning informing you that the Lock ID you entered is invalid will appear when you attempt
to create a license.

7. Accept the default Secret Key defined for the FPM in your license configuration file. You will
need to specify the secret key defined for your FPM in the license validation routine that you will
need to add to your FPM application. It is therefore recommended that you do not change the
default secret key to ensure that you specify the correct secret key in the license validation routine.

8. In the Secure Algorithm property, specify an index that corresponds to a security algorithm that
is defined in the security DLL file. The sample security DLL file uses an algorithm that has an index
of 0. If you plan on using the sample security DLL file, you must specify 0 in this property or else the
i.LON License Generator will not be able to generate an FPM license. See Building the Security DLL
File for more information on using algorithm indexes.

9. Inthe Customer Information: box, enter any pertinent customer data that you want recorded in your
FPM application license log file such as the company name, company representative, address, phone
number, and email address. Your FPM application license log file is updated each time you generate an
FPM application license.

10. Click Create License. A dialog opens in which you save the FPM license to an XML file. The default
file name of the FPM license is <ShortCompanyName><LonMarklD><ShortFeatureName>.xml.

Savein: | [iLOMLicenselGen e I S

iLONLicenseGenValues.me

File: marne: E chelon HYAC. <l
Save az type: | XML Files [7xmil) v

11. Specify the folder on your computer where customer FPM application licenses are to be saved and
then click Save. By default, the FPM license is saved to the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder. Once you save the FPM
application license, your FPM application license log file is updated.

12. Optionally, you can view your updated FPM application license log file. To do this, browse to the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder and then open the
iLONL.icenses.log file with a text editor.

i.LON SmartServer Freely Programmable Module User’s Guide 155

Licenze created on: Wednesday. September 05, 2007 13:34:42
Created by: Our Corporation

LonMark ID: O

Customer Information:

* ok ok ok

Your Company
John Doe
123 ABC. St

San Jo==, CA 95126

* License:
<tEml version="1.0" encoding="utf{-8"7:
¢LicenseManager»
{VersionHajor>l< - VerzionMajor:
{VerzionHinor:0< - VerziondHinor:
{License:
¢CompanyHamne:Our Corporation<-CompanyHame:
¢FeatureNamn=e:FFM HYAC Controller<-FeatureNamns:
¢Licen=eType:Inlinited< LicenseType:
<LockType HACID: ~LockTvpe>»
¢LockId:004071020418+<-LockId:
<Options:<-Option=:
¢Licen=ekey:>8DFB1477E44DF955226715411D4ERE24 < < Licen=ekey »
{sLicenze:
¢~ Licenszedanager >

The FPM application license log file lists the following information:

The date on which the FPM application license was created.

Your company’s name and LonMark ID

The customer information you entered in step 9.

The FPM license data, which consists of your company’s name, the name of the FPM
licensed, the license type, lock type, lock ID, any options specified, and the license key
generated for the FPM application by the security DLL file.

Supplying FPMs to Customers

156

After you built a release version of your FPM application and have created FPM application licenses
for your FPMs, you can supply your FPM applications to customers. When customers order an FPM
application from your company, you need to provide the following files for them:

Your company’s FPM resource file set in which you created the user-defined functional profile
template (UFPT) used by your FPM application. Your company’s FPM resource file set should be
stored in the LonWorks\Types\User\<Y ourCompany> folder on your computer, and it consists of
.ENU, fmt, .fpt, .is, and .typ files. These are the files you generated with when you created the
UFPT for your FPM with the NodeBuilder Resource Editor.

See Chapter 3, Creating FPM Templates, for more information on creating FPM templates and
generating your company’s FPM resource file set.

The device interface (XIF) file (.xif extension) that you created for your FPM application. Your
XIF should be stored in the destination folder that you specified when you generated the XIF with
the i.LON SmartServer LonWorks Interface Developer Tool.

See Chapter 4, Creating FPM Device Interface (XIF) Files, for more information on creating
model files and converting them to the XIFs with the i.LON SmartServer LonWorks Interface
Developer Tool.

The FPM executable module (with license validation enabled). This is the .app file that is created
and updated when you compile your FPM application with the i.LON SmartServer Programming
Tool. By default, your FPM application is stored in the

Creating FPM Application Licenses

LonWorks\iLON\Development\eclipse\workspace.fpm\<company program ID>.UFPT<FPT
Name>/Release folder on your computer, and it is named <company program ID>.UFPT<FPT
Name>.app.

See Chapter 5, Creating Freely Programmable Modules, for more information on creating and
compiling the FPM application. See Enabling License Validation in an FPM Application in this
chapter for more information on protecting your FPM applications.

The FPM application license. This is the .xml file you created with the i.LON License Generator
that is used to protect your FPMs. By default, your FPM licenses are stored in the
LonWorks\iLON\Development\Licensing\iLONLicenseGen folder on your computer.

See the Creating FPM Application Licenses section in this chapter for more information on
creating this file.

In addition to supplying the required files to your customers, you should also provide instructions that
explain how to install your FPMs on their SmartServers. The following is a set of sample instructions
that you can use or modify:

1.

Verify that an FPM programming license is installed on your SmartServer. If FPM
programmability is not licensed on your SmartServer, you can order an FPM programming license
by going to the i.LON SmartServer Web site at www.echelon.com/ilon.

Use FTP to access the root/lonworks/types folder on the flash disk of your SmartServer. Copy the
supplied resource file set to the root/lonworks/types folder.

Use FTP to access the root/lonworks/import folder on the flash disk of your SmartServer. Copy
the supplied device interface (XIF) file (.xif extension) to the root/lonworks/import folder.

Use FTP to access the root/config/license folder on the flash disk of your SmartServer. Copy the
supplied FPM application license (.xml file) to the root/config/license folder (or a subfolder, if
required by the license validation routine).

Use FTP to access the root/modules folder on the flash disk of your SmartServer. Copy the
supplied FPM executable module (.app file) to the root/modules folder.

Reboot the SmartServer using the SmartServer Web pages or the SmartServer console application.

4. To reboot your SmartServer using the SmartServer Web pages, right-click the local
SmartServer, point to Setup, and then click Reboot on the shortcut menu. The Setup —
Reboot dialog opens. Click Reboot to start the reboot.

e To reboot your SmartServer using the SmartServer console application, enter the reboot
command. For more information on using the SmartServer console application, see the i.LON
SmartServer User’s Guide.

Deploy, test, and connect the FPM application following the instructions in Chapter 6, Deploying
Freely Programmable Modules on a SmartServer.

i.LON SmartServer Freely Programmable Module User’s Guide 157

http://www.echelon.com/ilon

158 Creating FPM Application Licenses

38

Localizing the SmartServer Web
Interface

This chapter describes how to translate custom SmartServer Web pages and the entire
SmartServer Web interface to a different language.

i.LON SmartServer Freely Programmable Module User’s Guide 159

Language Localization Overview

You can localize the language of the SmartServer Web interface using the i. LON SmartServer
Programming Tool. The SmartServer includes English and German languages, but you can work with
the SmartServer in any one-byte or two-byte character language by translating the national language
resource files (.nls extension) on the SmartServer.

To localize the language of the SmartServer Web interface, you create a language localization project
in the i.LON SmartServer Programming Tool. You can then create localized custom SmartServer Web
pages, or you can localize the entire SmartServer Web interface.

Creating localized custom SmartServer Web pages entails doing the following:

1. Translating the COMMON.properties file on the SmartServer flash disk with the i.LON
SmartServer Programming Tool.

2. Translating the .properties file of any embedded application that you plan on using in your custom
SmartServer Web page. For example, if you wanted to create a custom Web page that contains an
Event Scheduler, you would translate the 8000010128000000[4].UFPTscheduler.properties file
with the i.LON SmartServer Programming Tool.

3. Creating a new custom SmartServer Web page using Adobe Contribute CS3 and i.LON Vision,
adding application objects to the Web page, selecting the localized language as the default, and
then publishing the custom SmartServer Web page.

Localizing the language of the SmartServer Web interface entails doing the following:

1. Translating one-by-one all of the .properties file on the SmartServer flash disk with the i.LON
SmartServer Programming Tool.

2. Creating a new language folder in the working copy of the SmartServer embedded image on your
computer.

3. Editing the index.htm file with a text editor so that you can select your language from your i. LON
SmartServer’s home page.

4. Translating and updating the language settings of the Welcome.htm, Menu.htm, Sidebar.htm
files with Adobe Contribute CS3 and i.LON Vision, or with a text editor.

The following sections describe how to create a language localization project, how to create localized
custom SmartServer Web pages, and how to translate the SmartServer Web interface.

Creating a Language Localization Project

160

You can create a new language localization project in the i. LON SmartServer Programming Tool. To
do this, follow these steps:

1. Verify that the SmartServer embedded image is installed in the
LonWorks\iLon100\images\iLon100 4.00 directory on your computer. The embedded image is
installed in this directory when you install the i.LON SmartServer software from the i. LON
SmartServer DVD. For more information on installing the i. LON SmartServer software, see the
i.LON SmartServer User’s Guide.

2. Create a working copy of the SmartServer embedded image on your computer. To do this, follow
these steps:

a. Copy the iLon100 4.00 folder in the LonWorks\iLon100\images directory on your computer.

Localizing the SmartServer Web Interface

& C:\l onWorks\ilLon100\images

¢ File Edit Miew

Favorites

Tools Help

eEack @ \‘-) l.ﬁ pSearch [E“ Folders v

i address |E:| CiiLonWorksiLon100images

File and Folder Tasks

mf} Rename this folder

@ Mo this folder

() Copy this folder

e Publish this falder ko the
Wb

4 Share this Folder
@ E-mail this Folder's files
¥ Delete this Folder

Other Places

I3 iLonioo

My Docurnents

g My Computer

ﬁd Iy Metwork Places

Details

Mame =~ Size | Type
() BoatRaM 4,00 File: Falder
Open
Explore
Search. .

Sharing and Security. ..
& Snaglt »
o WinZip >
Scan For Viruses. .
Send To 3

Cut

Paste

Create Shorkout
Delete
Renarme

Propetties

Date Modified £ Cwner
Bf25/2007 4:03 FM Administrataors
88/Z007 10:53 AM Administrators

b. Paste the folder in the same directory.

¢. Rename the folder to something meaningful such as “i.LON 100 4.00 <Language>".

& C:\LonWorks\iLon100Vimages

© Flle Edt View Favorites

Tools Help

eBack v -\-) lﬁ pSaarch H:‘ Folders v

: Address ‘@ CiiLonWworksiiLon100Yimages

v|GU

File and Folder Tasks

(2 Make a new folder
@ Fublish this Folder to the
Wb

ked Share this folder

Other Places

iLon100

[E] My Docurnents

a My Compuktet

H Iy Metwark Places

Details

Mame = Size Type
[C)BootROM 4.00 File Folder
IC)iLon100 4,00 File Folder

i File Folder

Date Modified

/252007 4:03 PM
/82007 10:53 &AM
8/8/2007 11:02 AM

£ Owner
Adrniniskrators
Administrators
ECHELOMjduval

3. Start the i.LON SmartServer Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer Programming Tools, and then click i.LON SmartServer
Programming Tools. The i.LON SmartServer Programming Tool opens.

4. Click File and then click Import. The Import dialog opens in the Select window.

i.LON SmartServer Freely Programmable Module User’'s Guide

161

162

Select

Create new projects from an archive file or directary.

Select an import source;

=)

Y

[=}-[= General
[archive File
99, Breakpoints
ﬁ Existing Projects into Waorkspace
[:L File System
EL Preferences
= CfC++
= s
(== Plug-in Development
(= Team

(2) < Back Finish

@

Cancel

Expand the General folder, click Existing Projects into Workspace, and then click Next. The

Import Projects window opens.

Import Projects

Select a directory bo search for existing Eclipse projects.

@

(%) select rook directory: | |

|[Browse. ..]

() select archive File: | |

Projects:

Browse, .

|:|Copy projects into warkspace

@ Next > Firish

Select Al
Deselect Al

Cancel

Click Browse. The Browse to Folder dialog opens.

Localizing the SmartServer Web Interface

Browse For Folder,

Select root directory of the projects to import

3 iLon
=) iLonloo
[driversupport
=) images W
[C3) EookROM 4,00
|3 iLon100 4,00
@ ¥ilon 100 4,00 French
| unsupported

[

[£

Faolder: | iLon100 4.00 French |

[Makﬁ Mew Folder] [Ok H Cancel]

7. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language> folder and then click OK.
A new project called NLS appears in the Projects: box. This means that your language
localization project has been created within the current workspace.

Import Projects —
Select a directory to search For existing Eclipse projects. @

-

() Select rook directory: | CriLonworkstiLonl00%imagesiLon100 4,00 Fre | [Brawse... l

() Select archive fils: | | Browse..,

Projects:

MLS Select Al
Deselect Al

|:| Copy projects into warkspace

@ Mewxk = [Finish][Cancel]

8. Click Finish. An NLS project appears in the C/C++ Projects view.

i.LON SmartServer Freely Programmable Module User’s Guide 163

Mavigatar = I

=)

9. Expand the NLS folder. All the English and German .properties files for the SmartServer
embedded applications, system setup Web pages, and headers and properties appear under the
NLS folder.

Mavigatar @ @&+ ¥ T8

@ 3000010122000000[4]. UFPTalarmGeneratar, properties
@ F000010123000000[4].UFPTalarmGenerator_de. properties
@ 3000010123000000[4].UFPT alarmMotifier properties

@ 3000010123000000[4].UFPTalarmMotifier _de.properties
@ 8000010128000000[4].UFPTanalogFunctionBlock. properties
@ 8000010128000000[4].UFPTanalogFunctionBlock_de.properti
@ 3000010128000000[4].UFPTdatalogger . properties

@ 3000010128000000[4].UFPTdatalogger_de.properties
@ F000010123000000[4]. UFPTdigitallnput. properties

@ 3000010123000000[4].UFPTdigitallnput_de. properties
@ 3000010123000000[4].UFPTdigitalDutput . properties

@ 80000101 280000000 4].UFPTdigitalOutput_de. properties
El 0000101 23000000 4]. UFPTpulseCounter, properties

@ 3000010128000000[4]. UFPTpulseounter_de.properties
@ F000010123000000[4].UFPTrealTimeClock. properties

@ F000010123000000[4].UFPTrealTimeClock_de, properties
@ 3000010123000000[4].UFPTscheduler . properties

@ 8000010128000000[4].UFPTscheduler_de.properties

@ 8000010128000000[4].UFPTtypeTranslator . properties

@ 2000010128000000[4]. UFPTLypeTranslator_de. properties
@ M_Zfg. properties

@ CM_Cfq_de.properties

@ COMMON, properties

@ COMMON_de. properties

@ Dp_Data. properties

El Dp_Daka_de.properties

@ Item_CFg.properties

@ Itern_Cfg_de.properties

@ LOM_CrmdQuerystatusPopup, properties

@ LOM_CrmdQueryatatusPopup_de.properties

@ LOM_ReceiveServicePinPopup. propetties

|Tﬂ 10k RerriveServiceRinPonnn de mrnnerkies

< *

Note: A language localization project is stored in its own set of resource files; therefore the installation of
an updated version of the SmartServer embedded image will not conflict with these resource files. After
you install an updated SmartServer embedded image on your computer, you just need to copy it to the
working copy of the embedded image you created in step 1. The i.LON SmartServer Programming Tool
will resolve any differences in your language localization project.

164 Localizing the SmartServer Web Interface

Creating Localized Custom SmartServer Web Pages

You can localize the language for the new individual custom Web pages you are planning to build. To

do this, you do the following:

1. Translating the COMMON.properties file in the root/web/nls/echelon/ folder on the SmartServer
flash disk with the i.LON SmartServer Programming Tool.

2. Translating the .properties file of any embedded application that you plan on using on in your
custom SmartServer Web page. For example, if you wanted to create a custom Web page that
contains an Event Scheduler, you would translate the
8000010128000000[4].UFPTscheduler.properties files in the root/web/nls/echelon/ folder with
the i.LON SmartServer Programming Tool.

3. Create a custom SmartServer Web page using i.LON Vision and Adobe Contribute CS3.

Translating Common Properties

You can translate the COMMON.properties file in the root/web/nls/echelon/ folder on the
SmartServer flash disk with the i.LON SmartServer Programming Tool. To translate this file, you do

the following:

1. In the C/C++ Projects view of the i.LON SmartServer Programming Tool, click the
COMMON.properties file under the NLS project.

T C/C+ Pr

Mawvigator

qg:;.vn:nﬁ

=l = NLS

@ CM_Cfg.properties
@ CM_CFg_de.properties
C OM.properties

@ COMMON_de. properties

@ Dp_Data.properties

@ Dp_Data_de.properties

@ Item_CFg.properties

@ Item_Cfg_de.properties

@ LOM_CmdQueryStatusPopup, properties

@ LOM_CmdQueryStatusPopup_de. properties
@ LOMN_ReceiveServicePinPopup. properties
@ LOM_ReceivesServicePinPopup_de. properties

@ LonCommandJueus, properties
T P J Vi

<

@ 20000101 23000000[4], UFPT alarmGenerator . properties

@ 0000101 23000000[4], UFPT alarmGenserator_de properties
@ 20000101 28000000[4], UFPT alarmMotifier, properties

@ 20000101 23000000[4], UFPTalarmMokifier_de.properties
@ 20000101 23000000[4], UFPTanalogFunctionBlack. properties
@ 20000101 23000000[4], UFPT analogrunctionBlack_de.properti
@ 80000101 28000000[4], UFPTdatalogger . properties

@ 20000101 23000000[4], UFPTdatalogger_de.properties

@ 80000101 23000000[4], UFPTdigitallnput. propetties

@ 20000101 25000000[4], UFPTdigitallnput_de. properties

@ 30000101 28000000[4], UFPTdigitalOutput. properties

@ 20000101 23000000[4]. UFPTdigitalOutput_de. properties
@ 20000101 23000000[4], UFPTpulseCaunter . properties

@ 20000101 28000000[4] UFPTpulseCounter _de, properties
@ 20000101 23000000[4]. UFPTrealTimeClock. properties

@ 20000101 23000000[4]. UFPTrealTimeClock_de. properties
@ 0000101 23000000[4], UFPTscheduler . properties

@ 80000101 28000000[4]. UFPTscheduler _de. properties

@ 20000101 28000000[4], UFPTtypeTranslator . properties

@ 20000101 23000000[4]. UFPTtypeTranslator_de.properties

2. The Properties Editor view opens.

i.LON SmartServer Freely Programmable Module User’s Guide 165

166

5.

es[...].propertiss X

Editor For ResourceBundle: COMMON. properties[. ..].properties,

Default

(=)=

ABE_APRII A
ABB_ALIGL
AEE_DAY
ABE_DECE
ABE_FEBR
ABE_HOUF
ABB_IANL
ABB_JLLY
ABE_JUNE

ABE_KB

AEE_MARC Eeran

AEE_MaY
ABE_MIN
ABB_MSEC
ABB_MOVE
ABB_OCTC
ABE_SEC
ABE_SEPTIV
3] | >

%5 3533%3553%5%5%%448

[Properties | [F] Default | [B] German | [E] Mew...

The left frame in the view lists all the common properties in the SmartServer Web interface. The
right frame includes boxes that display the English (Default) and German translations of a
selected property. The bottom includes tabs that you can click to view and edit a list of all the
properties within a .properties file for a specific language.

Click the New tab at the bottom of the Editor view. The New Properties File: dialog opens.

es[...].properties X

=g

Editor For ResourceBundle; COMMOMN, properties] .,].properties,

New properties file:

Choose or bype a Locale
[B
| Il Il |

Lang. Counkry

Wariank

[Properties | [F] Default| [F] German | [E] New...

In the Choose or Type Locale box, select the language and desired version (if different regional
varieties are available for the language) to which your custom SmartServer Web page is to be

translated.

Localizing the SmartServer Web Interface

™

properties[..] properties X
Editor For ResourceBundle: COMMON. properties[. ..].properties,

New properties file:

Choose or bype a Locale

French (Belgium)
French (Canada) —
French (France)

French (Luxembourg) bt

Create

[Properties | [F| Default | [B] German | [Ef Mew...

The Lang. and Country properties are filled in. Optionally, you can enter a Variant to further

categorize the selected language. This is useful if you want to create different translations of the
same language with the same regional version.

erties[...].properties X = H
Editor For ResourceBundle: COMMON. properties[. ..].properties,

New properties file:

Choose or bype a Locale

|French (France) w |
fro e] |
Lang. Counkry Variank

[Properties | [F| Default | [B] German | [Ef Mew...

7. Click Create.

i.LON SmartServer Freely Programmable Module User’'s Guide 167

& C/C++ - COMMON_fr_FR.properties]...]. properties - Eclipse SDK

File Edit Refactor Mavigate Search Project FPM Run Window Help

B0 QU P B % -

1. R O AR -1
T Mavigator 52

@ B000010128000000]
@ G0000101 25000000
@ &000010123000000]
@ 80000101 28000000
@ G0000101 25000000
@ &000010123000000]
@ B000010128000000]
@ £000010123000000]

4], UFPTdigitalCutput_de properties
4].UFPTdigitalOutput properties
4].UFPTpulseCounter_de. properties
4], UFPTpulseCounter properties
4].UFPTrealTimeClock_de.properties
4].UFPTrealTimeClack. properties
4], UFPTscheduler_de properties
4].UFPTscheduler_fr.propetties

[F] &000010123000000[4].UFPTscheduler properties

@ §000010128000000[4], UFPTkypeTranslatar_de.properties
@ §000010125000000[4]. UFPTypeTranslator. properties
[F] cM_cfg_de. properties

@ CM_CFa.properties

@ COMMON_de properties

[F] CoMMON_fr_FR.properties

@ COMMON properkies

[F] Dp_Data_de.properties

@ Dp_Data.properties

[B] Item_cFa_de.properties

[B] Ttem_CFq.properties

@ LOM_CmdQueryStatusPopup_de.properties

@ LOM_CrmdQueryStatusPopup. properties

[F] LON_RecsiveServicePinPopup_de.properties

@ LOMN_ReceiveServicePinPopup, properties

@ LonCommandQueue_de.properties

[F] LonCommandQueue. properties

@ PowerlineRepeatinganalysis_de properties

@ PowerlineRepeatingAnalysis. propetties

[F] Router_de properties

@ Router, properties

[P Setupodem _de.properties

@ SetupModerm, properties

[F] SetupRebact_de.properties

[F] SetupRebact.properties

B by inCmm i) A v mabin

<
PomEe

ER-=

"~

v

.].properties X

B (B cic++ |
=g|(z > f0

Editor for ResourceBundle:COMMON_fr_FR properties]...] properties.

D Default

ABE_APRI A
ABE_ALGL
ABE_DAY
ABE_DECE
ABE_FEBR
ABE_HOLF
ABE_JANL
ABE_ILILY
ABE_JUNE
AEE_KE
ABE_MARC
ABE_MAY
AEE_MIN
ABE_MSEC
ABE_HOWE
ABE_OCTC

- A

German

French (France)

LASASASASASASAASSAS

[Properties | [P] Default | [F| Setman | [F] French (France) Mew...

Prablems | & Console 57 . Properties

o consoles to display at this time,

i}
Li
B
0
o

8. A new COMMON<_language[REGION] [_variant]>.properties file is added to the C/C++
Projects view and this file appears in the Editor view. In addition, a box marked with the
language you selected is added to the bottom of the right frame of the Editor view. Note that all
the properties listed in the left frame are marked with warning symbols, indicating that the
property has not yet been translated. Once you enter a translation for a property, the warning

symbol is removed.

9. Translate each property listed in the left frame. You can do the translation from the Properties
tab or from your language’s tab (recommended).

e To translate the properties from the Properties tab, click each property listed in the left frame
and enter a translation in your language box in the right-pane one-by-one. This is the slower
approach as you must enter text for properties that do not have translations for the Default
(English) language (for example, the abbreviations for units of time and the abbreviations for
some months), and you are repeatedly clicking in between typing.

168

Localizing the SmartServer Web Interface

Editor For ResourceBundle; COMMON_Fr_FR.properties[, ..].properties,

E] Default

o apB_apRTA | || | AP
----- o, ABE_ALGL _
----- o, ABB_DAY
----- o, ABB_DECE
----- o4, ABE_FEER

""" o, ABE_HOUF ErrED

E

5%

----- oy, ABB_IANL
----- o, ABB_IULY Apr
----- o, ABB_JUNE
----- o, ABB_KB

----- o, ABB_MARY
----- o, ABB_MAY

----- o, ABE_MIN

French {France
----- o, ABE_MSEC ()

O« L N>

..... {!‘J., AEE_MNOVE Awril
""" o, ABE_OCTC

B Y T P

2] >

ABE_APRIL &dd

) PropertiesJ [B] Default| [German| [P] French (France)| @ e, |

You can comment out the text in a translation by selecting the checkbox ([_]#) in the upper
right-side of the language box. You can switch to your language’s property tab by clicking
the arrow (%) on the upper right-hand corner of your language box.

e To translate the properties from your language’s tab, first copy the Default (English)
translation and paste it into your language’s tab. You can begin translating the properties
listed in your language’s tab.

Editor For ResourceBundle: COMMON_fr_FR.properties]...].properties,

ABE_AFRIL = Awril
ABE_AUGUST = Aot

ABE_ DAY = d

ABE_DECEMEER Déc

ABE_FEEBRUARY Févr
ABE_HOUR = h
ABE JANUARY = Janv

ABE JULY = Juil

ABE JUMNE = Juin

ABEE KE = kO
< il]

#senerated by ResourceBundle Editor (http://eclipse-rbe.soi#s|

<

) Properties| [F| DeFauIt| [P] @erman [[F] French (France)‘ [E] Mew.., |

i.LON SmartServer Freely Programmable Module User’'s Guide

169

170

Tip: Save your language localization project frequently to safeguard your data from a power
outage or other failure. To save your language localization project, click File and then click Save.

10. When you finished translating all the properties in the COMMON.properties file, save your
language localization project.

11. Copy the localized copy of the COMMON.properties file to the SmartServer. To do this, follow
these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\nls\echelon
directory or on your computer (or other location where your working copy of the NLS files is
stored).

b. Use FTP to access the root/web/user/echelon/folder on the flash disk of your SmartServer.

c. Copy the COMMON<_language[_REGION] [_variant]>.properties file in the
LonWorks\iLon100\images\iLon100 4.00 <Language> /web/nls/echelon folder on your
computer to the root/web/user/echelon/ folder on the SmartServer flash disk.

Translating Embedded Application Properties

You can implement SmartServer embedded applications (Event Scheduler, Data Logger, Alarm
Notifier, and so on) in your custom SmartServer Web pages and have the properties in the applications
appear in a localized language. To do this, you translate the .properties file of any embedded
application that you plan on using in your custom SmartServer Web page.

For example, if you wanted to create a custom Web page that contains an Event Scheduler in a
localized language, you would translate the 8000010128000000[4].UFPTscheduler.properties file.

To translate this file, you would essentially follow the steps outlined in the previous section,
Translating the COMMON.properties File, except that in step 1, you click the
8000010128000000[4].UFPTscheduler.properties file under NLS project in the C/C++ Projects
view.

& C/C++ - BODDD1012B000000[4].UFPTscheduler. properties]...]. properties - Eclipse SDK

File Edit Refactor Mavigate Search Project FPM Run ‘Window Help
il = -G B 0-Q- @ B (e 5 [@ oo+ |

T Mavigator £2 = s =8l 20
= =5 LS A | [Editor for ResourceBundle: 5000010125000000(4]. UFPTscheduler . propertiesl.. .] properties.

[E .project
[F] 50000101 28000000[4]. UFPTalarmGenerator_de.properties G CAER
[F] 5000010125000000[4].UFFT alarmGenerator properties o ABB_FRID. &
[P| 6000010128000000[4], UFPTalarmhatifier_ds propertiss o ABE MO
@ £000010125000000[4]. UFPT alarmbatifier . properties o AEB}ATU
[F| 5000010128000000[4], UFPTanalogFunctionBlack_de.properti o ABB SUNC
[P] so00010128000000(4].UFFTanslogFunctionBlock. properties o AEE THUR
[F] &000010123000000[4] UFPTdatal ogger _de.properties o ABB_TUES
[F] 5000010128000000[4].UFPTdatalogger . properties & 488 WEDI Earm
[F] soooo101zs000000{4]. UFPTdigitalinput_de. properties " AEB:WEH
@ 80000101 28000000[4], UFPTdigitallnput properties & ADD DELE
[F] s000010128000000[4], UFPTdigitaloutput_de properties - ADDiEVEI\
[F] 5000010125000000[4] UFFTdigitalOutput properties # ADD_EXC
[F] 6000010126000000[4].UFPTpulseCounter_de. properties # ADV WAR
[P 8000010128000000[4]. UFPTpulseCounter, propertiss # COPY_SCH
[F| 5000010128000000[4], UFPTrealTimeClack_de.propertiss # DalLy French (France) | W |

[o* DAILY_SCH

o DELETEBY
4
<

@ §000010128000000[4], UFPTkypeTranslatar_de.properties
@ §000010125000000[4]. UFPTypeTranslator. properties
[F] cM_cfg_de. properties [Properties | [F] Default | [F| Serman | [F] French (France) Mewt.. .
B e Probirs B Carslo 55 ropatis “g ©--d
[B] COMMON_fr_FR.properties Mo consoles to display at this time.

@ COMMON propetties

@ Dp_Data_de.properties

@ Dp_Data.properties

[F] Ttem_CFg_de.properties

@ Item_CFg.properties

[F] LON_CmdQuerystatusPopup_de.properties
@ LOM_CmdQueryStatusPopup.properties

[B1 1 AR e mis i€ s PP i A ki

Localizing the SmartServer Web Interface

When you have finished translating the localized copy of the embedded application’s .properties fi

le,

save the language localization project, and then copy the file to the SmartServer following step 11 in

the previous section, Translating the COMMON.properties File.

Tip: Alternatively, you can create a new localized .properties file for an embedded application fro
copy of an existing English or German version. To do this, you do the following,

1.
application in the C/C++ Projects view. The Name Conflict dialog opens.

3

& Name Conflict

Enter a new name for 'S000010125000000[4]. UFPTscheduler, properties'

| Copy of S000010125000000[4], UFPTscheduler properties |

K,

J

2. Re-name the copy by deleting the “Copy of” pre-fix and inserting the “<_language[_REGION]

Cancel]

m a

Copy and paste the existing English or German version of the .properties file of the embedded

[_variant]>” suffix between the name of the embedded application and the .properties extension.

For example, you can create a French (France) version of the Event Scheduler by copying and
pasting the 8000010128000000[4].UFPTscheduler.properties file and re-naming it
8000010128000000[4].UFPTscheduler_fr_FR.properties.

& Mame Conflict

Enter a new name for ‘50000101 25000000[4]. UFPTscheduler, properties'

| 5000010128000000[4]. UFPTscheduler_fr_FR properties |

oK l [Cancel]
3. Click OK. The new localized version of the .properties file appears in the C/C++ Projects view.
4. Double-click the new localized version of the .properties file to begin translating its properties in

the Editor view.

Creating a Localized Custom SmartServer Web Page

You can create new custom SmartServer Web pages using Adobe Contribute CS3 and i.LON Vision

have the Web pages appear in a localized language. To create localized custom SmartServer Web

pages, you must translate the COMMON.properties file and the .properties file of the application

objects to be used in your custom SmartServer Web pages as described in the previous sections. In
addition, Adobe Contribute CS3 and i.LON Vision must be installed on your computer. For more

information on installing Adobe Contribute CS3 and i.LON Vision, see the i.LON SmartServer User’s

Guide.
To create a localized custom SmartServer Web page, you do the following:

1.
Contribute CS3. The Adobe Contribute CS3 Start page opens.

Start Adobe Contribute CS3. To do this, click Start, point to Programs, and then click Adobe

i.LON SmartServer Freely Programmable Module User’s Guide

Select your SmartServer from the Begin Editing box if you have already created a connection to
it. If you have not created a connection to your SmartServer, click Website Connection from the

171

172

5.

Create New box, and then follow the on-screen instructions of the Contribute Connection Wizard
to create a connection to your SmartServer.

Click New to create a new custom SmartServer Web page, expand the Starter Web Pages folder,
expand the Echelon Content Page folder, and then click Application Page. In the Page Title
box, enter a name for your new custom SmartServer Web page such as “Custom Scheduler.htm”,
and then click OK.

In your new custom SmartServer Web page, click the i.LON button (= -*") on the Contribute
toolbar, and then select one of the following objects that represent the application objects you can
add to your custom SmartServer Web page: Data Point View, Data Logger View, Scheduler, or
Alarm Notifier. This example uses a Scheduler object.

€ Adobe Contribute CS3 - [CustomScheduler (New). htm] EEX

File Edit View Bookmarks Insert Format Table Help

wPages

S l@l’ublish| 512 5end for Review| 5] Save For Later| ¥ Discard Draft] k-3 = _urk] = 0 |) b Ee
@ Browser: i.LON 100 Internet Server

9 starthim [Normal v|[oefautFort w[1e v B T

J Layer

Show Vahue

| Text Field
Texk Area

Combo Box

heduler.htm

Tmage Swapper
Radio Buttons
Select Box
Check Box
Slider

Lirk,

Data Point Yiew
Data Log Yiew

Scheduler

wHowDo L. Alarm Notifier
Custam Javascript

= Get started with my website T

Contribute tutorisl W Frameset Properties
Connectto a website Page Properties

Select & web page to edi il Mavigation

Eclt & page Page Title

Review & draft Message Bax

Become & Contribute webste Menu Buttans
acministrator —_—

4 Add a page to my website
4 Add content to a web page
4 Modify a web page

Finish up with my website
+ Work with blogs

4 Administer a website

Dane

The iLON-Object — <Application> dialog opens.

Localizing the SmartServer Web Interface

iLon-Object - Scheduler

Layer

Left 20 Width 100
Cancel

Top 20 Height 50

Z-lndex 1

Scheduler

[bem

Type ® wieek O ‘vear
Usage Yiew Caonfig

ear Start IS0 ‘week ofJan 1st First full week
Wwieek Start Sunday b

Show Week Mumnber

Murnber of columns

Mumber of rows

Default language B W

6. Configure the application object to fit the functionality provided by your custom SmartServer Web
page. In the Default Language box, select your localized language, and then click OK.

7. Edit and link your custom SmartServer Web page as described in the i.LON SmartServer User’s
Guide.

8. Click Publish to publish your localized custom SmartServer Web page. The application object
you added to the Web page appears in your localized language.

Creating Localized FPM Configuration Web Pages

You can localize the language for custom FPM configuration Web pages. To do this, follow these
steps:

1. Copy the root/web/config NLS folder on the SmartServer flash disk to your computer.

2. Start the i.LON SmartServer Programming Tool. To do this, click Start, point to Programs,
point to Echelon i.LON SmartServer Programming Tools, and then click i.LON SmartServer
Programming Tools. The i.LON SmartServer Programming Tool opens.

3. Click File and then click Import. The Import dialog opens in the Select window.

i.LON SmartServer Freely Programmable Module User’s Guide 173

174

Select

Create new projects from an archive file or directary.

Select an import source;

=)

Y

[=}-[= General
[archive File
99, Breakpoints
ﬁ Existing Projects into Waorkspace
[:L File System
EL Preferences
= CfC++
= s
(== Plug-in Development
(= Team

(2) < Back Finish

@

Cancel

Expand the General folder, click Existing Projects into Workspace, and then click Next. The

Import Projects window opens.

Import Projects

Select a directory bo search for existing Eclipse projects.

@

(%) select rook directory: | |

|[Browse. ..]

() select archive File: | |

Projects:

Browse, .

|:|Copy projects into warkspace

@ Next > Firish

Select Al
Deselect Al

Cancel

Click Browse. The Browse to Folder dialog opens.

Localizing the SmartServer Web Interface

6. Browse to the web/config folder you copied to your computer and then click OK. A new project
called NLS appears in the Projects: box. This means that your language localization project has
been created within the current workspace.

7. Click Finish. An NLS project appears in the C/C++ Projects view.

B C/C++ Projects X WL ¢« B Y70

LS

8. Expand the NLS folder. The English .properties files for the FPM configuration Web pages
appear under the NLS folder.

9. Create a new .properties file for the FPM configuration Web page as described in Translating
Common Properties earlier in this chapter.

10. Translate the NLS_TITLE property. This property provides the page title for your localized FPM
configuration Web page. Do not modify the text that is enclosed in braces.

For example, the following NLS_TITLE:
NLS _TITLE = {name=9FFD3E0000000400[5].UFPTSwitchEncoder}: Configure
Could be translated into French with the following name:

NLS TITLE = {name=9FFD3E0000000400[5].UFPTSwitchEncoder}: Configuration

My *9FFD3E0000000400[5]. UFFTHYACCantrollst_FrFR.properties[...].properties 3 =08
Editor for ResourceBundle: SFFD3E0000000400[3]. UFFTHYACContraller _fr_FR.properties]. ..]. properties,

D Default (= >
o, DEFALULT_TEXT MLS_TITLE = {name=9FFD3EN000000400[5]. UFPTHYAC Cantroller+: Configure
o MLS_TITLE
French {France) Cl# u >

MNLS_TITLE = {name=9FF03E0000000400[5]. UFPTHYAC Controller}:
Configuration,

MLS_TITLE Add

[Properties | [B] Default | [B] French (France) | [E] Mew...

i.LON SmartServer Freely Programmable Module User’'s Guide 175

Localizing the Language of the SmartServer Web Interface

Localizing the language of the SmartServer Web interface entails doing the following:

1. Translating one-by-one all of the .properties file in the web/nls/echelon folder on the SmartServer
flash disk with the i.LON SmartServer Programming Tool.

2. Creating a new web/user/echelon/<language[REGION] [_variant]> folder from a copy of the
existing web/user/echelon/de (German) folder in the working copy of the SmartServer embedded
image on your computer.

3. Editing the index.htm file in the web folder with a text editor so that you can select your language
from your i.LON SmartServer’s home page.

4. Translating the Welcome.htm file in the web/user/echelon/<language[REGION] [_variant]>
folder with Adobe Contribute CS3 and i.LON Vision, or with a text editor.

5. Translating and updating the language settings of the Menu.htm file in the
web/user/echelon/<language[REGION] [_variant]> folder with Adobe Contribute CS3 and
i.LON Vision, or with a text editor.

6. Updating language settings of the Sidebar.htm files in the
web/user/echelon/<language[REGION] [_variant]> folder with Adobe Contribute CS3 and
i.LON Vision, or with a text editor.

7. Viewing the results of your language localization project with the SmartServer Web interface.

Translating Property Files

You can translate the .properties file on the SmartServer with the i.LON SmartServer Programming
Tool. To do this, you one-by-one create localized copies of the .properties files listed in the C/C++
Projects view and translate all the properties listed in the files.

The SmartServer contains a total of 24 .properties files in the web/user/Echelon folder, consisting of
10 files for the embedded applications and 14 for the system setup pages and general properties. Each
.properties file contains anywhere from 5 to 412 properties. There is a total of approximately 1,450
properties. You can use these figures in estimating the man hours required to complete a language
localization project for the SmartServer.

If you want to translate the SmartServer Help.htm files in the web/user/Echelon folder, you should
first evaluate whether you have the resources requires for this task. Translating the Help.htm files
requires an effort greater than that for the translation of the .properties files. Furthermore, the
translation of the Help.htm files is not supported—you cannot use the i. LON SmartServer
Programming Tool to perform the translations. Instead, you need to use a text editor such as such as
Notepad, WordPad, TextPad, or Crimson Editor if you want to translate the SmartServer Help.htm
files.

When you have finished translating all the localized copies of the .properties file, save the language
localization project, and then copy all the .properties files to the SmartServer following step 11 in
Translating Common Properties in this chapter.

Tip: In addition to saving your language localization project frequently, you should regularly make
backups of the web/nls folder in the working copy of the SmartServer embedded image on your
computer. It is recommended that you make a backup each time you finish translating a file.

Creating New Language Folders

You can create a new web/user/echelon/<language[REGION] [_variant]> folder in the working copy
of the SmartServer embedded image on your computer. You need to do this in order to create
localized versions of the Welcome.htm, Menu.htm, and Sidebar.htm files. You will translate the
text of the Welcome Web page in the Welcome.htm file and the menus and menu items in the

176 Localizing the SmartServer Web Interface

Menu.htm file. In addition, you will change the language settings to your localized language in the
Menu.htm and Sidebar.htm files.

To create a new web/user/echelon/<language[REGION] [_variant]> folder, follow these steps:

1. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\echelon folder on
your computer (or other location where your working copy of the SmartServer embedded image is
stored).

2. Create a new folder named <language[REGION] [_variant]>. For example, if you are creating a
Korean translation, create a new folder named “ko”. If you are creating a French (France)
translation, create a new folder named “fr FR”.

& C:\LonWorksiiLon10DNimagestiLon100 4.00 Frenchiwebuserlechelon =3
© File Edit view Favorites Tools Help |’,'
e Back [) lﬁ /.\J Search || Folders -
: Address |Lﬂ C:lLonwworksiiLonl00%imagesiiLon100 4,00 Frenchiwebluseriechelon "| Go
Mame Size Type Da *
File and Folder Tasks] Cide File Folder ala
j Make a new Folder F!\e Folder ik
)) ko File: Folder 8/1
%] E\j‘:gs'“ this feldzr o the (@ 50000101 28000000[4]UFPT alarmGener ator_Analag, htm 1KE HTML Docurnent 4z
B Share this Folder @800001D128000000[4].UFPTa\armGenerator_Binary‘htm 1KE HTML Document 4z
'_(.é8000010128000000[4].UFPTa\armGenerator_CFg.htm 1KE HTML Document 4z
'_(.é8000010128000000[4].UFPTa\armGenerator_HaIp.htm 13KE HTML Docurment 4z
Other Places '_(,é800001U128000000[4].UFPTa\armNotifier_CFg.htm 1KE HTML Docurnent 4f2
'_(g8000010128000000[4].UFPTa\armNotifier_Condition.htm 1KE HTML Document 4z
) user '_r,é8000010128000000[4].UFPTa\armNotifier_DataPDints‘htm 1KE HTML Documnent 4f2
D My DOCUMENES '_r,éBDDDDI0128000000[4].UFPTa\armNotiFier_Destination.htm 1KE HTML Document 4z
:J My Computer EBDDDDID128000000[4].UFPTa\armNUtifiEr_HeIp.htm ZEBKE HTML Document 4z
‘ﬂ My Netwark Flaces @8000010128000000[4].UFPTa\armNUtifiEr_LeveI_PDpup.htm 1KE HTML Document 3z
@8000010128000000[4].UFPTa\armNotifier_MaiI_Popup.htm 1KE HTML Document 3z
'EBDDDDI0128000000[4].UFPTa\armNotifierjimpleMaiI.htm 1KE HTML Document 4z
Details ’_’.éSUUUUIElIZBUUUUUUH].UFPTa\armNotlfleerlewalstory.htm 1KE HTML Document 42
’_’éSUUUUIElIZBUUUUUUH].UFPTa\armNotlfler_Vlew_Summary.htm 1KE HTML Document 42
_r.éSDDDDID128000000[4].UFPTanalogFunctionB\ock_Cfg.htm 1KE HTML Document 42
_r.éSDDDDlDIZBDDDDDD[4].UFPTanaIngFunctinnB\nck_DataPnints.htm 1KE HTML Document 42
@SDDDDIDIZBDDDDDD[4].UFPTanalngFunctinnB\nck_Help.htm QKE HTML Document 4z
@8000010128000000[4].UFPTanangFunctionB\ock_PoIIRate_Popup.htm 1KE HTML Document 3z
8 5000N1 11 28000NNAT41 LIEPTralendar CFa him 1¥E HTMI Document ot

3. Copy the index.htm, Menu.htm, Sidebar.htm, Welcome.htm files to the new
<language[REGION] [_variant]> folder.

4. Copy the <language[_REGION] [_variant]> folder to the SmartServer. To do this, follow these
steps:

a. Use FTP to access the root/web/user/Echelon folder on the SmartServer flash disk.

b. Copy the <language[_REGION] [_variant]> folder on your computer to the
root/web/user/Echelon folder on the SmartServer flash disk.

Editing the index.htm File to Enable a New Language on the SmartServer

You can edit the index.htm file in the web folder with a text editor so that you can select your
language from your i.LON SmartServer’s home page. After you enable your localized language in the
index.htm file, you can copy the file to the SmartServer. To do this, follow these steps:

1. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web folder on your
computer (or other location where the index.htm file in your working copy of the SmartServer
embedded image is stored).

2. Open the index.htm file with a text editor such as Notepad, WordPad, TextPad, or Crimson
Editor.

3. Near the bottom of the file (35 lines from the end), locate the “<option>" elements. Insert an
<option> element for your localized language. For example, if you are creating a French (France)
translation, insert the following text:

i.LON SmartServer Freely Programmable Module User’s Guide 177

<optionvalue="fr_FR/'">French</option>

<td width="259%" class="tree">
<pr3elect Language: <select id="langfel” size="1">
<option walue="">English</option:
<option walue="de/">German< /options
(Zoption value="fr_FR,/">French</option>_)
< faelect=L/px

<Sds
<td width="33%"><ing border="0" height="101" src="imagessservice.JPG" width="11
<td widrth="33%"><ing border="0" height="101" src=
<ATr
</table>
</rd
Rl
</table>
</rd
<td class="rb_panel"™ width="50%">
<table align="center” horder="0" cellpadding="15" cellspacing="0" width="00%" »
<trx
<td-</spamn></td>
</trx
< rable>
snbap</od>
</trx
</thody>
</table>
</tdx
L 5y
<tr height="15" wvalign="middle">
«<td hycolor="#103a6c” colspan="2" height="15"></td>
L 5y
<tr height="20" wvalign="middle">
<td align="lefc"><a href="jawvascrip
L5y
</thody>
<jtablex
</body>

</hthl>

4. Save the index.htm file.
5. Copy the index.htm file to the SmartServer. To do this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web folder on your
computer (or other location where the index.htm file in your working copy of the
SmartServer embedded image is stored).

b. Use FTP to access the root/web folder on the SmartServer flash disk.

c. Copy the index.htm file on your computer to the root/web folder on the SmartServer flash
disk.

Translating the Welcome.htm File

You can translate the Welcome.htm file in the web/user/echelon/<language[REGION] [_variant]>
folder in your working copy of the SmartServer embedded image. You can do the translation with
Adobe Contribute CS3 and i.LON Vision, or you can do it with a text editor.

Translating the Welcome.htm File with Adobe Contribute CS3 and /.LON Vision

You can translate the Welcome.htm file using Adobe Contribute CS3 and i.LON Vision. To do this,
follow these steps:

1. Copy your web\user\echelon\<language[REGION] [_variant]> folder on your computer to the
SmartServer. To do this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\echelon
folder on your computer (or other location where your working copy of the SmartServer
embedded image is stored).

b. Use FTP to access the root/web/user/Echelon folder on the SmartServer flash disk.

c. Copy the <language[REGION] [_variant]> folder on your computer to the
root/web/user/Echelon folder on the SmartServer flash disk.

2. Start Adobe Contribute CS3. To do this, click Start, point to Programs, and then click Adobe
Contribute CS3. The Adobe Contribute CS3 Start page opens.

178 Localizing the SmartServer Web Interface

3. Select your SmartServer from the Begin Editing box if you have already created a Website
connection between Adobe Contribute CS3 and your SmartServer. If you have not created a
Website connection, click Website Connection from the Create New box, and then follow the
on-screen instructions of the Contribute Connection Wizard to create a connection to your
SmartServer.

4. Click the Choose Folder button (=¥ Chosse...) on the Contribute toolbar, select the
web/user/echelon/<language[_REGION] [_variant]>/Welcome.htm Web page, and then click
OK. The English version of the Welcome.htm Web page opens.

[Dﬁ Edit Page | 3 New ... l ¢ Back €3 stop Refresh 43']v Home Pages [C
address: | httpiff10.2.11.81 fuser fechelonyfr_FRwelcome, htm v @ Go ﬂ Choose. ..
Welcome.

This web site provides access to a
LONWORKS network. It is hosted by an
i.LON SmartServer.

For more information on the i.LON family
of products, including software updates,
please visit http://'www.echelon.com/ilon

5. Click Edit Page. Translate the text on the Web page from English to your localized language.

6. When you have finished translating the text to your localized language, click Publish. The
Welcome.htm Web page appears in your localized language.

[m Edit Page | 9 New ... l @ Back @ stop] Refresh 43'}7 Harme Pages g C
Address: | http:ff10.2.11.81 userfechelon/fr_FRWelcome, htm v @ G0 :"’) Choose...
Bienvenue!

Ce site vous donne accés & un réseau
LONWORKS Il est géré sur un i.LON
SmartServer.

Pour plus d informations sur la gamme
de produit i.LON, vous &tes prié de
visiter le site :
http://www.echelon.com/ilon

i.LON SmartServer Freely Programmable Module User’s Guide 179

Translating the Welcome.htm File with a Text Editor

You can translate the Welcome.htm file using a text editor such as Notepad, WordPad, TextPad, or
Crimson Editor. To do this, follow these steps:

1. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\echelon folder on
your computer (or other location where the Welcome.htm file in your working copy of the
SmartServer embedded image is stored).

2. Open the Welcome.htm file with your text editor.
3. Translate the highlighted lines of code.

=< 'DOCTYPE html PUBLIC "—//W3C//DTD HTML 4.01 Transitional//EN"™=

<meta http-equiv="content-type” content="text/html;charset=ucf-5">
<title>i.LON SmartServer - Bienvenue</title>)

<link href="../../ztyles/echelon/Global.cs3" type="text/oss" rel="styleshest ">
<gscript type="text/Jjsvascript" src="/scripts/echelon/Echelonlnit.js"»</scripts>
<style:>

Py
welcome { color: #113a65; font-size: 24px: font-family: "Trebuchet N3, Verdana, Arial, sans-serif; font-style:
-

</style>

A</ head:>

body bgcolor="#Lfffff"” leftmargin="0" Lopmargin="0">
<table width="100%" border="0" cellspacing="0" cellpadding="0" height="100%">
<L
<td colspan="2" wvalign="top" width="100%">
<table width="100%" horder="0" cellspacing="0" cellpadding="0" height="100%":>
<tr height="501">
<td colspan="2" height="501">
<table width="100%" border="0" cellspacing="0" cellpadding="0":>
<tr wvalign="top" height="15">
<td wvalign="top"></cd>
<tde</td>
“/tex
<tr wvalign="top" height="500">
<t valign="mwiddle" width="60%" height="500" bhackground="/images /building.gif">
<p class="BigText">snbsp: énbsp;Bienvenue !</p> }

<p class="BigText">&inbsp: tnbsp; énbsp;Ce site vous donne accisacule;s LAULEvVE; un rée

«<p class="BigText">Lnbop cnbsop: enbsprPour plus deacute; informations sur la gamans de

</ td>

<td valign="top"™ width="50%" height="500" hackground="../../images/building.gif™></td
</ tEs

e Line 8 corresponds to the “i.LON SmartServer — Welcome” title at the top of the SmartServer
Welcome Web page.

1.LON SmartServer sowerzosr = ECHELON

ORGANISATION VOIR METTRE AIDE SORTIR

Soumettre
Retourner

i.LON SmartServer - Bienvenu

e Lines 32-34 correspond to the “i.LON SmartServer — Welcome” text at the bottom of the
SmartServer Welcome Web page.

Bienvenue!

iZe site wous donhe accés & un résea) LONWORKS I1 est géré sur un £ LON SmartServer.

Pour plus d'informations sur la gamme de produt 1 LON | vous etes prié de wisiter le site
ity iwrarar. echelon. comitlon

4. Save the Welcome.htm file.
5. Copy the Welcome.htm file to the SmartServer. To do this, follow these steps:

180 Localizing the SmartServer Web Interface

a. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\Echelon
folder on your computer (or other location where the Welcome.htm file in your working copy
of the SmartServer embedded image is stored).

b. Use FTP to access the root/web/user/Echelon/<language[REGION] [_variant]> folder on the
SmartServer flash disk.

c. Copy the Welcome.htm file to the root/web/user/Echelon/<language[REGION] [_variant]>
folder on the SmartServer flash disk.

Translating the Menu.htm File

You can translate the Welcome.htm and Menu.htm files in the
web/user/echelon/<language[REGION] [_variant]> folder in your working copy of the SmartServer
embedded image. You can do the translation with Adobe Contribute CS3 and i.LON Vision, or you
can do it with a text editor.

Translating the Menu.htm File with Adobe Contribute CS3 and /LON Vision

You can translate the Menu.htm file using Adobe Contribute CS3 and i.LON Vision. To do this,
follow these steps:

1. Verify that you copied your web\user\echelon\<language[REGION] [_variant]> folder to your
i.LON following the steps described in Translating the Welcome.htm File with Adobe Contribute
CS3 and i.LON Vision.

2. Start Adobe Contribute CS3 if it is not already open. To do this, click Start, point to Programs,
and then click Adobe Contribute CS3. The Adobe Contribute CS3 Start page opens.

3. Connect Adobe Contribute CS3 to your SmartServer if it is not already connected. To do this,
select your SmartServer from the Begin Editing box. If you have not created a Website
connection between Adobe Contribute CS3 and your SmartServer, click Website Connection
from the Create New box, and then follow the on-screen instructions of the Contribute
Connection Wizard to create a connection to your SmartServer.

4. Click the Choose Folder button (I Chosse...) on the Contribute toolbar, and then select the
web/user/echelon/<language[REGION] [_variant]>/Menu.htm Web page. The English version
of the Menu.htm Web page opens.

[Df Edit Page | 9 New ... l @ Back @ stop (€] Refresh 4\"?;]v Home Pages g C
Address: | http:/f10.2.11.81 fuserfechelon/fr_FR/Menu.htm v (.) Go :”Choose...
-~
1.LON SmartServer —
SETUP VIEW SETTINGS HELP

5. Click Edit Page and then click anywhere in the menu bar at the top of the page.

i.LON SmartServer Freely Programmable Module User’s Guide 181

[‘fD Publish | 712 Send for Review | <H| Save far Later| $€ Discard Draft| | = ZT properties | <=Lk (2] = O | o B me

|N0rmal V|| V” V| B 7 = === EiZ£& £ é.é.

i.LON SmartServer powerep o &
]

Welcome to ed

6. Click then Properties button (& Praperties) on the Contribute toolbar. The iLon Object —
Navigation Edit dialog opens.

iLon-Object - Navigation Edit

Layer Settings
Left Type O Tree © Menu
Top Auto Tree Default language
Width Drientation (%) Herizontal O vertical
Height 25 | £S5 Class [Mairtenu MaintenuR oot |

Move Up

Lewel 1 Lewel 2 Lewvel 3 Level 4 Lewvel &
WIEW

HELP

[Add Item | [Add Item | [4dd Item | [4dd ltem |

7. Inthe Level 1 column, click SETUP (its menu items appear in the Level 2 box) and then click
Edit Item. The iLon Object — Navigation Subtree dialog opens.

iLon-0Object - Navigation Subtree

[con | |[From PC] [Fram iLon
Label [SETUP |

C55 Clasz |Mainh-1 e M aintd eruSub Menul |

8. In the Label box, translate SETUP to your localized language and then click OK.

182 Localizing the SmartServer Web Interface

9. One-by-one, click the items listed in the Level 2 column (except for the undefined items), click
Edit Item, enter the translation in the Label box of the iLon Object — Navigation Subtree
dialog, and then click OK.

10. Repeat steps 10-12 to translate the remaining menus in the Level 1 column and the menu items
associated with them, which are listed in the Level 2 column.

11. When you have finished translating the menus and menu items to your localized language, select
your localized language from the Default Language box and then click OK. This sets your
localized language as the default for the Menu.htm file.

iLon-Object - Navigation Edit

]
-~

Layer Settings

Left Tvpe O Tree ® Menu Cancel
Top Ao Tree Default language Edit ltem

Width Drientation &) Horizantal O vertical

Delate ltem
Height |25 | C55 Class |MainMenu b ainkd enuf oot
tMove Up
Lewel 1 Lewvel 2 Level 3 Lewel 4 Lewel &
COMFIGLRATION Mave Down
YwOIR D ate et beure
PARAMETERS Sécurité Cut
AlIDE undefined
SORTIR Informations Systén Faste
Werifications
undefined

Liste des Command
Analyse de Répétit

Add ltem | [Add ltem | [4dd ltem | [4dd ltem |

12. Click Publish. The Menu.htm Web page appears in your localized language.

@@ Back @Stop @Refresh ®_HomePages ﬁ‘k _'
PR el i /10 2 11 BLjuserfechelonjfr_FRJMeng bt v| @60 EPchoose...
.
1.LON SmartServer soweseo o = ECHELON

CONFIGURATION VOIR PARAMETERS AIDE SORTIR

Translating the Menu.htm File with a Text Editor

You can translate the Menu.htm file using a text editor such as Notepad, WordPad, TextPad, or
Crimson Editor. This entails translating the menu and menu items and updating the language settings
in the file. Updating the language settings enables the SmartServer to display the “submit” and “back”
buttons in the menu frame in your localized language.

To translate the Menu.htm file, follow these steps:

i.LON SmartServer Freely Programmable Module User’s Guide 183

1. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\echelon folder on
your computer (or other location where the Menu.htm file in your working copy of the
SmartServer embedded image is stored).

2. Open the Menu.htm file with your text editor.
3. Translate the highlighted lines of code.

«div id="menulayer” style="left: 1&Zpx:top: 7lpe:widch: 708pusheight: 25pw:z-index: 192; posiction: ahsoluce;™>
<div elon_type="menu” elon orientation="horizontal” elon_event="static"” elon_lang="fr_FR" elon_target="appFrame” elon_d
<div elon_arg_type="array” elon_arg name="entry arr’>
<div elon_arg_type="ohject’>
Zdiv elon_arg _name-" label” elon_arg wal="CONFLGURATLON =2 /dive ™
<div elon_arg name="class” elon_arg val="MainMerm MainMerm3ub Menul™></divs
<div elon_arg name="shift ¥" elon_arg wval="4"></diwvs
<div elon_ary type="array” elon_arg nawe="entry arr-
<div elon_arg_type="object” elon lsbel="TCP / IP" elon url="../Cw Cfg.htwzelon cu type=localllonIpselo

<div elon_arg_type="object” elon label="Date et heure” elon url="../SetupTime.htn"></divs

<div elon_ary_type="object” elon label="Sseacute;couritseacute;” elon url="../Hetupdecurity.htn></dive

<div elon_arg_type="object” elon_line="true™s</divs

<div elon_arg_type="object” elon label="Informations Jysteeacute;me’” elon url="../JystemInfo.htm”></di

<div elon_arg_type="object” elon label="Vgeacute;rifications” elon_url="../Setup¥erify.htw"></div-

<div elon_arg type="ohject” elon line="true">=</div:

<div elon_arg_type="object” elon label="Liste des Commandes LON™ elon url="../LonCommandueus.htn></d:

<div elon arg type="object” elon label:"Anal'gge de Baeacute;pseacute;titions en Courant Porteur” elol
</dive

<fdive
<div elon_arg type="object” elon_label="VOIR" elon class="MainMenu MainMermfub Menul™ elon_shift y="4">
<div elon_arg type="array™ elon_arg hame="entry arr™x
<div elon_arg_type="object” elon label="Bandeau desacute;ilarmes” elon url
<div elon_arg type= " elon label="Historicque des ilarmes” elon_url=
<div elon_arg type=" " elon line="true™x</dive
<div elon_arg_type=" " elon label="Journawc” elon url="../G000010128000000[4].UFFTdatalogger_Wiew.
<div elon_arg_ type=" " elon line="true"></div>
<div elon_arg_type=" " elon_lahel="Donnéeacute ;es” elon_url="../ViewDataPoinrts.hrn” elon target="d
<fdive
s/dive
<div elon_arg typ "PARAMETERS" elon shift_y="4" elon_target="popup” alon_ux:l="../qlobals€f
<div elon_arg typ 1 AIDE" elon_url="javascripti:EchelonTop.Echelon.Echelon.getInstance () .sh
<div elon_arg_type="object” elon label="S0RTIR” elon url="javascript:window.close |} =< /divs
</dive
<fdive

. #8000010126000000[4].UFFTH
#8000010128000000[4].UFFTal

< dive
<div id="ilon2" style="wisibility: wisible; display: block; position: absolute; z-index: 1907 top: Zlpx; left: 5; width: 176px; hei
<img src="/images/iLON_smartserver.gif” alt="" border="0"</div>
<div id="eLonPower” style="wisihilirty: wisible; display: block: position: absolute; z-index: 1907 top: 36px; lefr: 723px; widch: 14
</divs
diy jd="titlelaver™

e Lines 36-48 in this example correspond to the “Setup” menu and its menu items.

CONFIGURATION

TCP /IP

Date et heure

Securité

Informations Systéme
Vérifications

Liste des Commandes LON

Analyse de Répétitions en Courant Porteur

e Lines 51-58 in this example correspond to the “View” menu and its menu items.

VDIR

Bandeau d " Alarmes

Historique des Alarmes
Journaux

Donnees

e Lines 61-63 in this example correspond to the “Settings”, “Help”, and “Log Off” menus.
Note that the translation of the SmartServer online help files is not supported.

PARAMETERS AIDE SORTIR

184 Localizing the SmartServer Web Interface

4. Change all the “elon_lang_de” settings to “elon_lang_<language[REGION] [_variant]>” (lines

5.
6.

33, 96, and 102 in the following example).

<div id="memuLayer" style="left: l82px:top: 7lpx:;width: 708px:height: Z5px:;z-index: 192 position: absolute:™-
<diw elon_type="meru” elon_orientation="horizontal™ Eluniavant;"st.at.lc"Elnnit.argﬁt="appFramE" elon_
<div elon_aryg_type="array” elon_arg_haue="entry_arr’r
<div elon_arg_type="object":>
<div elon_arg_name="lahel” elon_arg_wal="CONFIGURATION™></diws
<div elon_arg name="class"” elon_arg_val="MainMenu Mainflenufub Hemul's<7dive
<div elon_arg name="shift y" elon_arg wal="4":</diwvs
<div elon_aryg_type="array” elon_arg_name="entry_arr’x
<div elon_arg_type="object” elon_ label="TCP / IPF" elon_url="../Co_CLg.hto?elon_co type=localllonIpselo:

<div elon_arg type="ohject” elon_lahel="Date et heure” elon url="../SetupTime.htn" >/ divs

<div elon_arg_type="object” elon_label="Sseacute;ouritseacute;” elon url=". ./ Setupfecurity. htn=</divs

<div elon_arg_type="ohject” elon_line="true™s</divs

<div elon_arg_type="object” elon_label="Informations Jysteeacute;me” elon url=".. /SystenInfo.hom></di

<div elon_arg_type="oblect” elon_label="¥geacute;rificatlions” elon_url="../Setup¥erify.htn ></div-

<div elon_arg_type="ohject” elon_line="rtrue”»</dive

<div elon_arg_type="object” elon_label="liste des Commandes LON" elon url="../LonCommandfueue. htn < /d

<div elon_arg_type="ohject” elon_lshel="inalyse de Reeacute;pseacute;titions en Courant Forteur” elon t
FRLIL

<fdive
<div id="buttonlayer” style="left: Opx:top: 103px;width: 13Zpx:height: 77pxsz-index: 190;position: absolute;™>
<tahle id="buttonTabhle" border="0" cellspacing="1" cellpadding="0" height="100%"2>
<tr height="35">
<td class="Empty" width="19">=</td>
<td id="submitCell"” class="Background” aligm="center”™ width="135">
<button class="ControlButton” elon_type="subnitbutton” elun_versiun_numbe)::"4.U"</hut,tun:>
</rd>
<Strs
<tr height="35">
<td class="Eupty" width="19"></td>
<td id="backCell” class="Background” align=-"center” width="135">
<button class="ControlButton” elon_type="hackhurrton’™ lnn_verslnn_nu.m}:er="4.D")(/’hutmn}
<Sds
</trs
</tablex
<fdive
</ hodys

108
il htm]

Save the Menu.htm file.
Copy the Menu.htm file to the SmartServer. To do this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\Echelon
folder on your computer (or other location where the Menu.htm file in your working copy of
the SmartServer embedded image is stored).

b. Use FTP to access the root/web/user/Echelon/<language[REGION] [_variant]> folder on the
SmartServer flash disk.

c. Copy the Menu.htm file to the root/web/user/Echelon/<language[REGION] [_variant]>
folder on the SmartServer flash disk.

Translating the Sidebar.htm File

You can update the language settings of the Sidebar.htm files in the
web/user/echelon/<language[REGION] [_variant]> folder within your working copy of the
SmartServer embedded image with Adobe Contribute CS3 and i.LON Vision, or with a text editor.
This enables the SmartServer to display the objects in the sidebar frame of the SmartServer Web
interface in your localized language. The objects in the sidebar frame consist of the General and
Driver mode buttons, the message box, and the objects in the navigation pane.

Translating the Sidebar.htm File with Adobe Contribute CS3 and /.LON Vision

You can update the language settings for the Sidebar.htm file using Adobe Contribute CS3 and i.LON
Vision.

1.

Verify that you copied your web\user\echelon\<language[REGION] [_variant]> folder to your
SmartServer following the steps described in Translating the Welcome.htm File with Adobe
Contribute CS3 and i.LON Vision.

Start Adobe Contribute CS3 if it is not already open. To do this, click Start, point to Programs,
and then click Adobe Contribute CS3. The Adobe Contribute CS3 Start page opens.

Connect Adobe Contribute CS3 to your SmartServer if it is not already connected. To do this,
select your SmartServer from the Begin Editing box. If you have not created a Website

i.LON SmartServer Freely Programmable Module User’s Guide 185

connection between Adobe Contribute CS3 and your SmartServer, click Website Connection
from the Create New box, and then follow the on-screen instructions of the Contribute
Connection Wizard to create a connection to your SmartServer.

4. Click the Choose Folder button (= choase...) on the Contribute toolbar, and then select the
web/user/echelon/<language[REGION] [_variant]>/Sidebar.htm Web page. The English
version of the Sidebar.htm Web page opens.

[m Edit Page | 3 Mew ... l i Back @ stop] Refresh 43']7 Home Pages (s C

Address: | htkp:ff10.2.11.81 juserfechelon/fr_FR/Sidebar, htm v @Go :"’)Choose...

5. Click Edit Page. A Navigation tree icon appears on the Web page.

+

[3;‘9 Publish | 712 Send for Review | 4F] save For Later | 3¢ Discard Draftl : . ‘o Properties -e',av Lirik. v 2 W QQ “b@ Eﬁ*

Mormal + || Defaulk Fonk “|16 ~| B F =

i |9

A 7

B % Navigation

6. Click then Properties button (& Praperties) on the Contribute toolbar. The iLon Object —
Navigation Edit dialog opens.

7. Select your localized language from the Default Language box and then click OK. This sets your
localized language as the default for the Sidebar.htm file.

186 Localizing the SmartServer Web Interface

iLon-Object - Navigation Edit

Layer Settings
Left I:I Type ® Trea O Menu
Top I:I Auto Tree Drefault language
wiidth I:I Orientation Harizontal Wertical
Height | | £55 Class | 50

Lewel 1 Lewvel 2 Level 3 Lewel 4 Lewel &

Cut

Pasta

Add ltem | [Addltem | [Add Item | [Add Item |

8. Click Publish. The Sidebar.htm Web page appears in your localized language.

[Dﬁ Edit Page | D Mew .. l (b Back = @ Stop @ Refresh %T Home Pages Eﬁ-‘\

Address: |http:.l'.l’lD.Z.11.81,l’user,l’echelon,ffr_FR,l’Sidebar.htm v| @Go [“:"Dchoose...

g}

Translating the Sidebar.htm File with a Text Editor

You can update the language settings for the Sidebar.htm file using a text editor such as Notepad,
WordPad, TextPad, or Crimson Editor. To do this, follow these steps:

1. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\Echelon folder on
your computer (or other location where the Sidebar.htm file in your working copy of the
SmartServer embedded image is stored).

2. Open the Sidebar.htm file with your text editor.

3. Change the one “elon_lang de” setting to “elon_lang <language[REGION] [_variant]>” (line 12
in the following example).

i.LON SmartServer Freely Programmable Module User’s Guide 187

< IDOCTYPE html PUOELIC "-//WiC//DTD HTML 4.01 Transitional//EN">-

L

<html>
<head>
<meta http-equiv="Content-Type” content="text/htul;charset=utf-5" >
<titlexSidebar</titles>
<gCript type="text/jawvascript” src="/scriptssechelon/EchelonInit.js"></script>
<link href="/styles/echelon/Global.css" type="text/css" rel="stylesheet'-
= heads

o

-1 T

Q

<hodys

<diwv elon_type="navtree” elon wersion mumher="4.0" el0n_system_dir=",-’user,-"echelonf"
style='width: 100% ;height: 100% ;background-image: url("/images/grey_strip.gif™);'
elon_class="MainMerm MainMenuRoot™ elon_auto_tree="true"/>

</hodys

4. Save the Sidebar.htm file.
5. Copy the Sidebar.htm file to the SmartServer. To do this, follow these steps:

a. Browse to the LonWorks\iLon100\images\iLon100 4.00 <Language>\web\user\Echelon
folder on your computer (or other location where the Sidebar.htm file in your working copy
of the SmartServer embedded image is stored).

b. Use FTP to access the root/web/user/Echelon/<language[REGION] [_variant]> folder on the
SmartServer flash disk.

c. Copy the Sidebar.htm file to the root/web/user/Echelon/<language[REGION] [_variant]>
folder on the SmartServer flash disk.

Viewing the Localized SmartServer Web Interface

After you have copied the index.htm file and the <language[REGION] [_variant]> folder to the
SmartServer, you can view your localized version of the SmartServer Web interface. To do this

follow, these steps:

1. Open your i.LON SmartServer’s home page. If the i.LON SmartServer Web pages are already
open, close your browser.

2. In the Configuration & Service box near the top of the home page, select your localized
language.

1.LON SmartServer = ECHELON

Configuration & Service: Login

Programmable — run up to 10 simultaneous
custom programs

Direct LNS® interface to view and use the

LNS database

Standalone mode — manage up to 200 devices
without an LNS database

Network management via Web pages

More intuitive user interface

Create trend graphs using the configuration Web
pages or through iLonVision

Localize configuration pages to any language
64MB of Flash and ROM

S 0¥ ﬁ'ﬁm{\\ﬁ.:.m

—_— i.LON SmartServer

3. Click Login. The localized i.LON SmartServer - Welcome Web page opens.

188 Localizing the SmartServer Web Interface

1.LON SmartServer soweseonr = ECHELON'

CONFIGURATION VOIR PARAMETERS AIDE SORTIR
i.LON SmartServer - Bienvenue

Louvoyer -~
@ Général O Pilote
Sk LAN
= & LON100
Remote Access

& my mailserver.my domain.com

Bienvenue!

Ce site vous donne accés a un
réseau LONWORKS Il est géré sur un
i.LON SmartServer.

Pour plus dinformations sur la
gamme de produit i.LON, vous
&tes prié de visiter le site :
http:/iwww.echelon.com/filon

v

© 2007 Echelon Corporation i.LON 100 Embedded Softvare Version 4.00.103

4. The menus, the objects in the sidebar frame (left frame), and text in the i.LON SmartServer -
Welcome Web page (application frame to the right) should appear in your localized language.

5. Click the menus to view the translated menu items. Expand the tree in the sidebar frame and click
the objects in the tree to see their translated Configuration and Driver property Web pages. Click
on various embedded applications in General mode to view their translated versions.

Tip: If objects do not appear in their localized language, you may need to delete the temporary internet
files from your computer.

i.LON SmartServer Freely Programmable Module User’s Guide 189

190 Localizing the SmartServer Web Interface

Appendix A
FPM Programmer’s Reference

This appendix details the files, routines and methods you will use to create and program
your FPMs.

i.LON SmartServer Freely Programmable Module User’s Guide 191

Overview

This chapter provides details you will need when programming your module. It includes the following
sections:

e Template Files. This section describes the template files you will use to create your module.

e Routines. This section describes the four main routines you will need to implement within your
custom module: Initialize(), Work(), OnTimer(), and Shutdown().

e Methods. This section describes the data point, timer, RS-232 interface, RS-485 interface, and file
access methods you can call from the four main routines.

Template Files

When you create an FPM, the following template files are generated for your module.

e .cpp file. This C++ source file contains the Initialize(), Work(), OnTimer(), and
Shutdown () routines that specify the behavior of your FPM.

e .hfile. This C header template file contains all the routine and method definitions required for
your FPMs.

e Utils.cpp file. This C++ source file contains all the helper routines called by the
Initialize(), Work(), OnTimer(), and Shutdown() routines.

Routines

The behavior of an FPM is defined by the Initialize(), Work(), OnTimer (), and
Shutdown)routines that are called from the .cpp file. The following table displays when these
routines are executed and the type of functions performed in each of these routines for an FPM
application and an FPM driver.

] Functions to be Performed in FPM
When Routine

Routine is Executed FPM Application FPM Driver
Initialize() |FPMisstarted |1. Setinitial data point 1. Open RS-232 or RS-485
or enabled values. interface.
2. Start timers. 2. Start timers.
3. Write data point
properties.
Work() Data point value |1. Execute an algorithm. 1. Initialize RS-232 or
changes 2. Start and stop timers. RS-485 interface.
3. Read data point 2. Write to the RS-232 or
properties. RS-485 interface.
onTimer(Q) Timer expires |1. Perform routine tasks 1. Initialize RS-232 or
such as reading data RS-485 interface.
point status. 2. Read and write to RS-232
2. Read other data point or RS-485 interface.
properties. 3. Write values to data points.
3. Start and stop timers.
Shutdown() FPM is stopped [1. Stop timers. 1. Stop timers.
or disabled 2. Close RS-232 or RS-485

192 Appendix A - Programmer’s Reference

connection.

Initialize()

The Initialize() routine in the .cpp file is called when your FPM application or driver starts or is
enabled. For an FPM application, you can use the Initial ize() routine to write initial data point
values, and start timers. For an FPM driver, you can use the Initial ize() routine to open RS-232
or RS-485 connections, start timers, and write data point properties.

e You can start timers using the Start(Q)method of the CFPM_Timer class or the user-defined
START_TIMER(Q) macro. The Start(Qmethod calls back the OnTimer () routine, which
handles timers expiration events. The START_TIMER() macro calls back a custom timer
handler that you must create. See Timer Methods for more information about using the
Start(Qmethod and the START_TIMER() macro.

e You can open the RS-232 and RS-485 interfaces on the SmartServer using the rs232_open()
and rs485_open() methods. For more information on these methods, see RS-232 Interface
Methods and RS-485 Interface Methods later in this chapter.

FPM Application Example

The following example demonstrates code you could use in the Initial ize(Qroutine of an FPM
Application. In this example, an initial value is written to a data point and two timers are started.

DECLARE(_0000000000000000_0 ::SNVT_temp_f, nviSetPoint,
INPUT_DP)

CFPM_Timer m_oTimerl; //declared in header file
CFPM_Timer m_oTimer2; //declared in header file

void CUFPT_FPM_Application::Initialize()

{
nviSetPoint = 68.5;
m_oTimerl.Start(FPM_TF_REPEAT, 2000);
m_oTimer2._Start(FPM_TF_ONETIME, 0);

}

FPM Driver Example
The following example demonstrates code you could use in the Initial ize(Qroutine of an FPM
Driver. In this example, the FPM connects to an RS-232 interface and then starts one timer.
int _rs232_fd = -1;
CFPM_Timer m_oTimer3; //declared in header file
void CUFPT_FPM _Driver::Initialize()
_rs232_fd = rs232_open(9600);

m_oTimer3.Start(FPM_TF_REPEAT, 1200);
}

Work()

The Work () routine in the .cpp file is called when the value of a data point declared in an FPM
application or driver changes. The Work() routine establishes functionality between the data points
defined in the FPM to the data points on the SmartServer. When configuring the Work () routine, you

i.LON SmartServer Freely Programmable Module User’s Guide 193

determine which data point was updated using the Changed() method. See Methods for more
information on using this method.

For an FPM application, you can also use the Work () routine to start and stop timers, and you can use
it to read data point properties.

For an FPM driver, if a data point value has changed and you want to write data to the RS-232
interface as a result, you must first initialize communication between your FPM and the devices
connected to the RS-232 and RS-485 interfaces. You can initialize communication with the interfaces
using the rs232_ioctl () and rs485_ioctl () methods.

FPM Application Example

The following example demonstrates code you could use in the Work(Qroutine of an FPM
application. In this example, the Changed() method evaluates whether the values of two data points
has changed and performs some algorithm if at least one of the values has changed.

SNVT_count inl;
SNVT_count in2;

void CUFPT_FPM_Application::Work() {
it (Changed(inl) || Changed(in2))

// perform some algorithm when value of inl or In2 changes

3
FPM Driver Example

The following example demonstrates code you could use in the Work (Qroutine of an FPM driver. In
this example, the Changed () method evaluates whether the value of a data point has changed and
initializes and writes to the RS-232 interface if it has.

SNVT_str_asc Linel;

void CUFPT_FPM_Driver::Work(Q)

{
if (Changed(Linel))
{
//Initialize RS-232 interface
int nBytesToRead;
rs232_ioctl(RS232_fd, FIONREAD, (int) &nBytesToRead);
// Write to RS-232 interface
rs232_write(RS232_fd,
(Byte *)Linel->ascili,
strlen((char*)Linel->ascii));
}
}
OnTimer()

The OnT imer () routine (or your custom timer handler) in the .cpp file handles timer expiration
events. You use this routine in conjunction with the Start(Q)methods and the START_TIMER(Q)
macros called in the Initialize() routine. When configuring the OnT imer () routine, you can

194 Appendix A - Programmer’s Reference

determine which timer expired using the m_oTimer .Expired() method. See Timer Methods for
more information on using these timer methods.

For an FPM application, you can also use the OnT imer () routine to start and stop timers, and you
can use it to read and write to data point properties. For an FPM driver, you can use the OnTimer()
routine to read and write to the RS-232 and RS-485 interfaces.

FPM Application

The following code demonstrates code you could use in the OnTimer () routine in an FPM
application. In this example, the m_oTimer .Expired(Qmethod valuates which of two timers has
expired and performs some tasks upon their expiration. If m_oTimer1 expires, the OnTimer()
routine checks whether the status of a data point is AL_ALM_CONDITION. If m_oTimer2 expires,
the OnTimer () routine re-starts the timer.

CFPM_Timer m _oTimerl; //declared in header file
CFPM_Timer m_oTimer2; //declared in header file

m _oTimerl.Start(FPM_TF_REPEAT, 2000);
m _oTimer2.Start(FPM_TF_ONETIME, 0);

void CUFPT_FPM_Application::OnTimer()

{
if (m oTimerl.Expired())
{
//check status of a data point
nviTemp_status =
nviTemp.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);
if (nviTemp_status == AL_ALM CONDITION)
//perform algorithm if nviTemp status is AL_ALM_CONDITION
}
}
if (m oTimer2.Expired())
//restart a timer
m_oTimer2.Start(FPM_TF_ONETIME, 1000);
}
}
FPM Driver

The following example demonstrates code you could use in the OnTimer (Qroutine of an FPM driver.
In this example, a custom timer handler method evaluates whether a timer started with the

START_ TIMER method has expired. If the timer has expired, the custom timer handler method read
and writes to the RS-232 interface.

CFPM_Timer m_oTimer3; //declared in header file
START_TIMER(m_oTimer3, FPM_TF_REPEAT, 10000, RS_232 Timer);

void CUFPT_FPM _Driver::RS 232 Timer()
ifT (rs232_read(RS232_fd, Linel, 1) == 1)

rs232_write(RS232_fd, (Byte *)"F1", strien(*F1"));

i.LON SmartServer Freely Programmable Module User’s Guide 195

}

Shutdown()

The Shutdown() routine in the .cpp file is called when your FPM stops or is disabled. You can use
the Shutdown () routine to stop timers and close RS-232 and RS-485 connections in an FPM driver.
In addition, you can use Shutdown () routine to free previously allocated memory and perform any

required cleanup before shutting down the FPM.

® You can stop a timer using use the Stop()and StopAl ITimers()methods of the
CFPM_Timer class.

e You can end communication between your FPM and the devices connected to the RS-232 and
RS-485 serial ports on the SmartServer using the rs232_close() and rs485_close()
methods. For more information on these methods, see RS-232 Interface Methods and RS-485
Interface Methods later in this appendix.

FPM Application Example

The following example demonstrates code you could use in the Shutdown()routine of an FPM
Application. In this example, a timer is stopped.

void CUFPT_FPM_Application: :Shutdown()
{

m _oTimerl.Stop;

3
FPM Driver Example

The following example demonstrates code you could use in the Shutdown (Qroutine of an FPM
driver. In this example, the FPM closes the connection to an RS-232 interface and then stops all
running timers.

void CUFPT_FPM_Driver::Shutdown()

rs232_close(_rs232_fd);
StopAllTimers(Q);
}

Methods

This section describes the methods provided by Echelon that you can use when writing the
Initialize(), Work(), OnTimer(), and Shutdown() routines in your FPM. These methods
include data point methods, timer methods, RS-232 methods, and RS-485 methods.

Internal FPM Data Point Methods

For the data points declared in an FPM application or FPM driver, you can use the
Changed()method to determine if a data point has been updated and you can use the
PROPAGATE (Qmacro to write values to a structured data point. For data points declared in an FPM
application, you can use the ResetPriority()method to set and reset the priority used by the
module to write values to a data point. You can use these internal data point methods in the Work ()
and OnT imer (Qroutines of an FPM application or driver.

196 Appendix A - Programmer’s Reference

Internal Data FPM Scope
Point Method [Mnjtialize() Work() OnTimer() Shutdown
FPM Application FPM Application
Changed() - FPM Driver FPM Driver _
FPM Application FPM Application
Propagate() T FPM Driver FPM Driver o
ResetPriority() — FPM Application FPM Application —
Changed()

You can use the Changed () method in the Work () and OnT imer (Qroutines of an FPM
application or driver to determine whether the value of a data point has changed.

SYNTAX
bool Changed(const CVariable& rVar)

The rVar parameter specifies a data point declared in the FPM. If the value of the specified data
point has changed, this method returns a true value; otherwise, it returns a Fal se value.

EXAMPLE

The following example demonstrates how you can use the Changed () method to check whether
the values of the data points in your FPM have changed.

if (Changed(x) || Changed(y));

Propagate()

You can use the PROPAGATE () macro in the Work() and OnT imer (Qroutines of an FPM
application or driver in conjunction with the —> operator (element selection through pointer) to update
the value of a structured data point.

SYNTAX
void PROPAGATE(varName)
The varName parameter specifies a data point declared in the FPM to be updated.

EXAMPLE

The following example demonstrates how to write to structured data points using the
-> operator and the PROPAGATE () method.

nvoSwitch->value = 200;
nvoSwitch->state = 1;
PROPAGATE(nvoSwitch);

Note: You can also use temporary data point variables to write values to the fields within a
structured data point. To do this, you declare a temporary data point, store the desired values in
the various fields of the temporary data point, and then assign the declared data point a reference
to the temporary data point variable. The following code demonstrates how to write to a
structured data point using temporary data point variables

SNVT_switch tmp_switch; //create temporary DP variable

// set DP value in temp DP variable
// set DP state in temp DP variable
// assign declared DP to temp DP,
// which triggers a data point write

tmp_switch.value = 200;
tmp_switch._state = 1;
nvoSwitch = tmp_switch;

i.LON SmartServer Freely Programmable Module User’s Guide 197

ResetPriority()

You can use the ResetPriority()method in the Work() and OnTimer (Qroutines of an FPM
application to enable lower priority applications to write values to a data point declared in the module.

SYNTAX
STATUS ResetPriority(cVariable& rVar,
unsigned short nPrioAuthority);
The rVar parameter specifies the name of a data point declared in the FPM application.

The nPrioAuthor ity parameter specifies the priority to be used to reset the priority assigned
to the data point. The priority is a value between 0-255 (highest priority) and 255 (lowest
priority) that determines whether an application can write values to a data point.

If the priority specified in the NPrioAuthor ity parameter is equal to or higher than the
priority currently assigned to the data point, this method returns a STATUS value of OK and the
priority used by the FPM application to write to the data point is reset to 255. All applications in
which the data point is registered are notified that they can write values to the data point, and the
application with highest priority is able to write values to the data point.

To include multiple instances of an FPM in the calculation of the data point priority, you must use
the SetDpProperty(UCPTpriority)method to set the cfgUCPTpriority property of the
data point accordingly.

If the priority level specified is lower than the priority currently assigned to the data point, this
method returns a STATUS value of ERROR.

EXAMPLE

The following example demonstrates a ResetPrior ity ()method that attempts to reset the
priority of a data point declared in an FPM application using a priority of 200.

STATUS st = ResetPriority (nviSetPoint, 200);

if (st==ERROR) //iT current DP priority >200
{

}

printf("'DP Reset Priority too Low'™);

FPM Application Data Point Property Methods

For the data points declared in an FPM application, you can use specific property methods in the
Work()and OnTimer (Qroutines get their names, times of last update, and statuses, and to get and set
their priorities. The following table displays the valid scope of the data point property methods in an
FPM application.

FPM Application Scope
Property Name
Initialize() | Work() OnTimer() | Shutdown
FPM::Dp::cfgUCPTname — Read Read —
FPM::Dp::cfgUCPTAliasName — Read/Write | Read/Write —
FPM::Dp::dataUCPTlastUpdate — Read Read —
FPM::Dp::dataUCPTstatus — Read Read —
FPM::Dp::dataUCPTpriority — Read/Write | Read/Write —
Notes:

198 Appendix A - Programmer’s Reference

e You can use the get() methods to read the properties of the external data points on the
SmartServer. External data points include those data points on the internal SmartServer device
[i.LON App (Internal)] and the data points of the external devices connected to the SmartServer.

e Using the data point property methods extensively may significantly impact the performance of
the SmartServer; therefore, it is recommended that you use these methods sparingly.

GetDpPropertyAsString(UCPTname)

You can use the GetDpPropertyAsString(name) method in the Work()and
onTimer Qroutines of an FPM application to read the name of the data point.

SYNTAX
const char* GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname)

This method returns the UCPTname configuration property of the data point in the following
format: <network>/<channel>/<device>/<functional block>/<data point>. The UCPTnhame
configuration property is an array unsigned ASCII characters.

EXAMPLE
const char* nviSetPoint_name;

nviSetPoint_name =
nviSetPoint.GetDpPropertyAsString(FPM: :Dp: :cfgUCPTname) ;

printf ('nviSetPoint name = "%s* /n', nviSetPoint_name);

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsString(UCPTAliasName)

You can use the GetDpPropertyAsString(UCPTAl iasName) method in the Work()and
OnTimer Qroutines of an FPM application to read the alias name of the data point. This is
useful for getting the alias names of the external data points on the SmartServer.

SYNTAX
const char* GetDpPropertyAsString(FPM: :Dp::AliasName)

This method returns the UCPTAliasName configuration property of the data point. This
configuration property is defined in the Alias Name property in the data point’s Configuration —
Data Point Web page on the SmartServer.

The alias name was the naming convention used for data points in the €3 release of the i. LON
software. The data points in the tree were organized by their alias names, which correspond to the
locations of the data points.

e The data points on the i.LON App (Internal) device under the LON channel have default alias
names that begin with the "NVL" prefix.

e The virtual data points on the i.LON System (Internal) device under the VirtCh channel have
default alias names that begin with the "iLON System" prefix. In the e3 release of the i. LON
software, these data points were referred to as "NVVs".

e The data points of the external devices connected to the SmartServer do not have default alias
names, and this property is initially disabled for these data points. In the €3 release of the
i.LON software, these data points were referred to as "NVEs".

EXAMPLE
FpmlteminfoColl_t::iterator itEnd = oRTCiLon.end();

i.LON SmartServer Freely Programmable Module User’s Guide 199

for(FpmlteminfoColl_t::iterator it = OoRTCiLon.begin();
it '= Itend; ++it)

CFpmltemInfo &v = (*it);
printf("'UCPTaliasName: %s,
GetDpPropertyAsString(Dp: :cfgUCPTal iasName));
}

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsTimeSpec(UCPTlastUpdate)

You can use the GetDpPropertyAsTimeSpec(UCPTlastUpdate) method in the
Work()and OnTimer (Qroutines of an FPM application to read the time at which the data point
was last updated.

SYNTAX
const timespec GetDpPropertyAsTimeSpec(FPM: :Dp: :dataUCPTlastupdate)

This method returns the UCPTlastupdate configuration property of the data point in the
following format: YYYY-MM-DDTHH:MM:SSZ. The UCPTlastupdate configuration property
is a timestamp in UTC (Coordinated Universal Time) indicating the last time the data point
configuration was updated.

EXAMPLE
timespec nviSetPoint_ lastUpdateTime;

nviSetPoint_lastUpdateTime =
nviSetPoint.GetDpPropertyAsTimeSpec(FPM: :Dp: :dataUCPTlastUpdate);

printf ('SetPoint last update = %d/n",
nviSetPoint_lastUpdateTime);

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsPointStatus(UCPTstatus)

You can use the GetDpPropertyAsPointStatus(UCPTstatus) method in the
Work()and OnTimer (Qroutines of an FPM application to read the current status of a data point.

SYNTAX

FPM: :Dp: :PointStatus
GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus)

This method returns the UCPTstatus configuration property of the data point. The UCPTstatus
configuration property is an enumeration defined by enum PointStatus in the

FPM_Variable.h file. It indicates the current status of the data point. This property is updated in
real time by the SmartServer’s internal data server. The enumerated values of this property are as

follows:
AL _INVALID =1
AL_NO_CONDITION =0

AL_ALM_CONDITION =
AL_TOT_SVC_ALM_1 =
AL_TOT_SVC_ALM_2 =
AL_TOT_SVC_ALM_3 =
AL_LOW_LMT CLR_1 =

g hWINEF

200 Appendix A - Programmer’s Reference

AL_LOW_LMT_CLR_2 =6
AL_HIGH_LMT CLR_ =7
AL_HIGH_LMT_CLR 2 =8
AL_LOW_LMT_ALM_1 =9
AL_LOW_LMT_ALM_2 =10
AL_HIGH_LMT_ALM_1 =11
AL_HIGH_LMT_ALM_2 =12
AL_FIR_ALM =13
AL_FIR_PRE_ALM =14
AL_FIR_TRBL =15
AL_FIR_SUPV =16
AL_FIR_TEST_ALM =17
AL_FIR_TEST_PRE_ALM =18
AL_FIR_ENVCOMP_MAX =19
AL_FIR_MONITOR_COND =20
AL_FIR_MAINT_ALERT =21
AL_FATAL_ERROR =30
AL_ERROR =31
AL_WARNING =32
AL_HEADER =243
AL_FOOTER =244
AL_DEBUG =245
AL_INFO =246
AL_SYSTEM_INFO =250
AL_VALUE_INVALID =251
AL_CONSTANT =252
AL_OFFLINE =253
AL_UNKNOWN =254
AL_NUL =255

EXAMPLE

FPM: :Dp::PointStatus nviSetPoint status;

nviSetPoint_status =
nviSetPoint.GetDpPropertyAsPointStatus(FPM: :Dp: :dataUCPTstatus);

printf ('nviSetPoint status = %d /n /n", nviSetPoint_status);

Note: Using this data point property method extensively may significantly impact the performance
of the SmartServer; therefore, it is recommended that you use it sparingly.

GetDpPropertyAsint(UCPTpriority)

You can use the GetDpPropertyAsInt(UCPTpriority) method in the Work(Qand
OnTimer Qroutines of an FPM application to read the current priority of a data point.

Note: The use of the GetDpPropertyAsInt(UCPTpriority) method is not recommended.
SYNTAX
int GetDpPropertyAsInt(FPM: :Dp: :dataUCPTpriority)

The FPM: :Dp: :dataUCPTlastupdate parameter specifies the UCPTpriority configuration
property of the data point. The UCPTpriority configuration property is a short that indicates the
current priority level assigned to the data point, where O is the highest priority, and 255 is the
lowest.

i.LON SmartServer Freely Programmable Module User’s Guide 201

EXAMPLE
int nviSetPoint priority;

nviSetPoint _priority =
nviSetPoint.GetDpPropertyAsInt(FPM: :Dp: :dataUCPTpriority);

printf ('nviSetPoint priority = %d /n", nviSetPoint priority);
SetDpProperty (UCPTAliasName)

You can use the SetDpProperty (UCPTAIl iasName) method in the Work()and
OonTimer Qroutines of an FPM application to write an alias name to a data point. This method
updates the UCPTAliasName configuration property of the data point.

SYNTAX

void SetDpProperty(FPM: :Dp: :dataUCPTAliasName, const char* const
pszValue)

The pszValue parameter specifies an alias name to be assigned the data point. The alias name
can be any string that describes the data point.

EXAMPLE
nviSetPoint.SetDpProperty(FPM: :Dp: :dataUCPTAliasName, “FPM DP
Setpoint™);

SetDpProperty (UCPTpriority)

You can use the SetDpProperty (UCPTpriority) method in the Work()and
OnTimer Qroutines of an FPM application to write a priority to a data point. This method
updates the UCPTpriority configuration property of the data point, which indicates the current
priority level assigned to the data point, where 0 is the highest priority, and 255 is the lowest.

Note: The use of the SetDpProperty(FPM: :Dp: :dataUCPTpriority)method is not
recommended.

SYNTAX

void SetDpProperty(FPM: :Dp::dataUCPTpriority, int nValue)

The nValue parameter specifies the priority to be assigned the data point.

EXAMPLE
nviSetPoint.SetDpPropertyAsInt(FPM: :Dp: :dataUCPTpriority, 200);

FPM Driver Data Point Property Methods

For the data points declared in an FPM driver, you can use specific property methods in the
Initialize(routine to set their default values, persistent flags, poll rates, and unit strings. The
following table displays the valid scope of the data point property methods in an FPM driver.

FPM Driver Scope

Property Name

Initialize() Work() OnTimer() | Shutdown
FPM::Dp::cfgUCPTdefOutput Write — —
FPM::Dp::cfgUCPTpersist Write — —
FPM::Dp::cfgUCPTpollRate Write — —

202 Appendix A - Programmer’s Reference

FPM::Dp::cfgUCPTunit Write — — —

Note: Using the data point property methods extensively may significantly impact the performance of
the SmartServer; therefore, it is recommended that you use these methods sparingly.

SetDpProperty(defOutput)

You can use the SetDpProperty(defOutput) method in the Initial ize(Qroutine of an
FPM driver to write the default value of a data point. This is the value that the data point should
use when it is not receiving updates, or when it is reset or overridden.

SYNTAX

void SetDpProperty(FPM: :Dp::cfgUCPTdefOutput, int nValue)
The nValue parameter specifies the default value to be assigned the data point.
EXAMPLE

F1.SetDpProperty(FPM: :Dp: :cfgUCPTdefOutput, 100);

SetDpProperty(persist)

You can use the SetDpProperty(persist) method in the Initial ize(Qroutine of an
FPM driver to set whether a data point is persistent (a constant).

SYNTAX
void SetDpProperty(FPM: :Dp::cfgUCPTpersist, bool bValue)

The bValue parameter specifies whether the data point is persistent. Specify true to make the
data point a constant. Specify False to enable the value of the data point to be updated.

EXAMPLE
F1_SetDpProperty(FPM: :Dp: :cfgUCPTdefOutput, true);

SetDpProperty(pollRate)

You can use the SetDpProperty(pol IRate)method in the Initial ize(Qroutine of an
FPM driver to set how often the data point is polled.

SYNTAX

void SetDpProperty(FPM::Dp::cfgUCPTpersist, int nValue)

The nValue parameter specifies the frequency in which a data point is polled (in milliseconds).
EXAMPLE

Linel.SetDpProperty(FPM: :Dp: :cfgUCPTpol IRate, 900);

SetDpProperty(unit)

You can use the SetDpProperty(unit)method in the Initial ize(Qroutine of an FPM
driver to specify the unit string used by the data point.

SYNTAX

void SetDpProperty(FPM: :Dp::cfgUCPTunit, const char* const pszValue)
The char parameter specifies the unit string to be used by the data point.

EXAMPLE

F1.SetDpProperty(FPM: :Dp: :cfgUCPTunit, “state”);

i.LON SmartServer Freely Programmable Module User’s Guide 203

UFPT Local Variables

Creating an FPM application (or driver) with the New FPM Project wizard in the i. LON SmartServer
Programming Tool generates a class that inherits from CFPM_App. This class provides the
implementation for an FPM functional block. At runtime, only one instance of this class will be
created for each unique FPM. When you add multiple FPM devices on the SmartServer that use that
same unique FPM, multiple functional block instances of the FPM are created. When a Work()
routine in the FPM is called, the FPM framework provides data point values that are applicable to their
respective functional block instances.

If you want to use additional data point variables that also apply to specific functional block instances,
you can use the DECLARE_FB_INSTANCE_LOCAL() macro. For example, you can declare a UFPT
local variable that stores how often the Work () routine has been called by specific functional block
instance or you can declare a UFPT local variable that stores the file name of a functional block
stance.

Consider a scenario in which there is one internal FPM Math device that has two functional block
instances of the Math UFPT (Addl and Add2). The Math FPM application conatins three data points
(inl, in2, and outl), and it has one local variable (cal ICount) that is incremented when the
Work() routine is called.

e On the Net/LON/MathFPM/Add1 functional block, in1l is set to 20, and then N2 is set to 5.
This results in the Add1 functional block calling the Work () routine twice. The outl data point
is updated to 20 and then to 25, and the cal ICount local variable is updated to 2.

e On the Net/LON/MathFPM/Add2 functional block, inl is set to 10 (the N2 data point is not
updated). This results in the Add2 functional block calling the Work() routine once. The outl
data point is updated to 10 and the cal ICount local variable is updated to 1.

SYNTAX

DECLARE_FB_INSTANCE_LOCAL(dataType, variableName)
EXAMPLE

// <= section datapoint variable declarations
DECLARE_FB_INSTANCE_LOCAL(int, callCount);

External SmartServer Data Point Methods

In an FPM application, you can use the LiSt() method with a specific Xselect syntax to obtain a list
of external data points on the SmartServer. External data points include those data points on the
internal SmartServer device [i.LON App (Internal)] and the data points of the external devices
connected to the SmartServer.

After a data point ID is obtained with the List() method, you can use the Read() and Write()
methods in an FPM application to evaluate and update the data point. In addition, you can use the
get() methods described in the FPM Application Data Point Property Methods section in this
appendix to read the properties of the external data points on the SmartServer.

Notes: Using the List(), Read(), and Write()methods in an FPM application may significantly
impact the performance of the SmartServer; therefore, it is recommended that you use these methods
sparingly.

List()
SYNTAX

STATUS List(const string& rsXSelect, FPM::FpmltemColl_ t&
rListUniquelndexes);

204 Appendix A - Programmer’s Reference

In the string parameter, you specify an xSelect statement to be used to filter the external data
points on the SmartServer by name. The format used for a data point name is as follows:
<network>/<channel>/<device>/<functional block>/<data point>. This means that, for example,
you can obtain all the data points of the Digital Output 1 functional block on the SmartServer. To
do this, you would specify an xSelect statement that acquires all unique data points with names
starting with “Net/LON/i.LON App/Digital Input 1”.

In the rListUnique Indexes parameter, you specify the collection of structures that contain
item IDs that are to be used in the Read routine.

EXAMPLE

The following example demonstrates a L i st()method that obtains the data points in the digital
output functional block of a lamp that is connected to the SmartServer.

FpmlteminfoColl_t items;
STATUS st = List(""//1tem[startswith(
UCPTname,/”’Net/LON/Lamp/Digital Output//”)]', items);

After the list of the data points in the digital output functional block is acquired, the properties of
the listed data points can be obtained using the get() data point property methods. The
following example demonstrates how to get the properties of the data points returned by the
List()method.

FpmlteminfoColl_t::iterator itEnd = oRTCiLon.end();
for(FpmlteminfoColl_t::iterator it = OoRTCiLon.begin();
it = itEnd; ++it)

CFpmltemInfo &v = (*it);

printF("'UCPTname: %s :: UCPTaliasName: %s :: UCPTindex: [%d]
:: ItemCfgDepth: %d /n",
Vv.GetDpPropertyAsString(Dp: :cfgUCPTname),
v.GetDpPropertyAsString(Dp: :cfgUCPTal iasName),
v.GetUCPTindex(),
v.GetDpPropertyAsltemCfgDepth(Dp: :cfgltemDepth));

3

Notes:

* You can also define an xSelect statement that queries data point properties instead of actual data
points. For example, you could define an xSelect statement that queries the AliasName
configuration property of a data point.

char szXSelect[128] =
//1tem[@xsi:type=/"Device_Cfg/"][UCPTaliasName=/"xxo/""]";

e Ifyou define a more general xSelect statement that could return a set of mixed network objects
(e.g., devices, functional blocks, and data points), you need to evaluate the cfgltemDepth
property of the objects being returned. This property can have one of the following types:

ItemCFfgDepth_Network // item is a network
ItemCFfgDepth_Channel // item is a channel
ItemCfgDepth_Device // item is a device

ItemCfgDepth_Fb // item is a functional block
ItemCfgDepth_Dp // item is a data point
ItemCfgDepth_Cp // item is a configuration property

ItemCFfgDepth_UNKNOWN // item has an unknown object type

® You can use the GetUCPTindex()in the List()method to obtain the network variable index
of the data point within its device.

i.LON SmartServer Freely Programmable Module User’s Guide 205

206

Read()

You can perform a Read() method in an FPM application to read the values of the data points
returned by the List() method.

SYNTAX

STATUS Read(const CFpmltemInfo& rMeta,
Byte* const pbyVvalue,
unsigned iInt nSize,
bool bReadProperties = false,
int nMaxAgeMillis = -1);

In the CFpmltemInfo parameter, you must specify an object obtained by the LiSt() method.
The object’s cFgl temDepth property must be of type 1temCfgDepth_Fb or
ItemCFgDepth_Dp; otherwise, this method returns an ERROR in the STATUS value.

The pbyValue parameter specifies the variable used to store the value returned by the method.
If a container is provided (pbyValue != NULL), this method returns the following properties
of the data points in addition to their values (as a result, bReadProperties == true):

FPM::Dp::cfgUCPTname
FPM::Dp::dataUCPTlastUpdate
FPM::Dp::dataUCPTstatus
FPM::Dp::dataUCPTpriority

The nSize parameter specifies the size of the data point returned by the method.

The nMaxAgeMi I i s parameter specifies how the source of the data point value and how often
the FPM application polls the data point. This parameter accepts the following values:

e -1. The data point value is read from the SmartServer’s internal data server. The poll rate
used by the FPM application is set to the poll rate configured for that data point in its Setup -
LON Data Point Driver Web page. This is the default.

e 0. The data point value is read directly from the data point. Note that because the data point
value is being read synchronously, the FPM application may not able to perform any other
processing until it receives the data point value.

e >1. The value you specify is compared to the amount of time that the data point value has
been cached in the SmartServer’s internal data server.

0 IfnMaxAgeMillis is less than the period of time the data point value has been cached,
the internal data server polls the data point and returns the updated value to the FPM
application.

o IfnMaxAgeMi I lis is greater than the period of time the data point value has been
cached, the internal data server returns the cached value to the FPM application.

The STATUS value returned by this method can either be ERROR or OK

If you want to read only the values of the data points returned by the List()method, you can use a
Read () method that does not take the bReadProperties parameter. In this case, the Read ()
method has the following signature:

STATUS Read(const CFpmltemlnfo& rMeta,
Byte* const pbyVvalue,
unsigned int nSize,
int nMaxAgeMillis = -1);

EXAMPLE

Appendix A - Programmer’s Reference

The following example demonstrates a Read () method that evaluates the value of a data point
returned by a List() method.

FpmlteminfoColl_t items;
SNVT_time_stamp time;

if(List(""//1tem[@xsi:type=/"Dp_CFg/'"][contains(UCPTname,
/"'nvoRtTime Date/')]", items))
{
printf("'/nitems.size(Q=%d", items.size());

if(1Read(items[0], (Byte*)&time, sizeoF(SNVT_time_stamp)))

{
printf('/nnvoRtTimeDate: %d-%d-%d %d:%d:%d', time.year,

time.month, time.day, time._hour, time.minute,
time.second);

} else printf(*"/nRead failed™);
}else printf(*'/nList failed);

Write()

You can perform a Write () method in an FPM application to write values to the data points returned
by the List() method.

SYNTAX
STATUS Write(const FPM::Fpmltem& rFpmltem, Byte* pbyValue);

In the rFpmltem parameter, you must specify an object obtained by the List() method. The
object’s cfgltemDepth property must be of type 1temCFgDepth_Fb or
ItemCFgDepth_Dp; otherwise, this method returns an ERROR in the STATUS value.

The pbyValue parameter specifies the value to be written to the data point.
The STATUS value returned by this method can either be ERROR or OK.
EXAMPLE

The following example demonstrates a Wr 1 te () method that changes the value of a data point
returned by a List() method.

FPM: :FpmltemColl_t items;
SNVT_time_stamp time;

Write(items[0], (Byte*)&time):

Timer Methods

You can use timers to perform tasks that must be performed periodically, such as reading data from the
RS-232 or RS-485 interfaces or performing data point updates. A separate CFPM_Timer application
class handles the starting, stopping, and querying of timers.

To use a timer in your FPM, you must first declare it as a member of the CFPM_T imer application
class in the “Mandatory Application Members” section in the .h file using the following syntax:

CFPM_Timer m_oTimerl; //declare a timer

You then need to initialize the timer in the “Constructor/Deconstructor” section of the .cpp file using
the following syntax:

, m_oTimerl(this) //initialize timer

i.LON SmartServer Freely Programmable Module User’s Guide 207

208

Start()

You can use the Start(Q)method of the CFPM_T imer class to start a timer. The Start()method
causes the system to call back the OnT imer (Qroutine, which handles the timer event. The
Start(Qmethod is the standard approach for starting timers. You can use this method in the
Initialize(), Work(), and OnTimer (Qroutines of an FPM application, and you can use it in
the Initialize(routine of an FPM driver.

SYNTAX
void Start(FPM_TimerFlags_t eMode, uint_t nTimeoutMillis);

The eMode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT for a
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMi 11 is parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

EXAMPLE

The following example demonstrates a Start()method that starts a timer and repeats it every 2
seconds.

CFPM_Timer m_oTimerl; // declared in header file
, m_oTimerl(this) // initialized in source file

m_oTimerl.Start(FPM_TF_REPEAT, 2000);
START_TIMER()

You can use the START_TIMER() macro as an alternative approach for starting timers. It causes the
system to call back a user-defined timer handler method. You can use the START_TIMER()macro
inthe Initialize(), Work(), and OnTimer (Qroutines of an FPM application, and you can use
it in the Initial ize(Qroutine of an FPM driver.

SYNTAX
START_TIMER(timeVar, mode, timeoutMillis, funcName)
The timeVar parameter specifies the name of the timer to be started.

The mode parameter specifies the type of the timer. You can enter FPM_TF_REPEAT for a
repeating timer, or you can enter FPM_TF_ONETIME for a timer that is used just once.

The nTimeoutMi 1 is parameter specifies the timer interval in milliseconds. You should set
this parameter to a minimum of 100ms.

The funcName parameter specifies the name of the user-defined timer handler method that is
called when this expires.

TIMER HANDLER SYNTAX

Timers started with the START _TIMER() macro must be handled with a user-defined timer
handler method that has the following signature:

void <funcName>()

You must declare your user-defined timer handler method in the “Implements the user
functionality” section of the .h file.

EXAMPLE

Appendix A - Programmer’s Reference

The following example demonstrates a START_TIMER(Qmacro that starts a timer that repeats
every 3 seconds and is handled by the OnMy T imer3()user-defined timer handler method.

CFPM_Timer m_oTimer3; // declared in header file
, m_oTimer3(this) // initialized in source file

START_TIMER(m_oTimer3, FPM_TF_REPEAT, 3000, OnMyTimer3);

void OnMyTimer3(); // declared in header file

Expired()

You can use the Expired() method of the of the CFPM_Timer class to check whether a timer has
expired. You can use this method in the Work(Qand OnTimer (Qroutines of an FPM application.
If this method returns true, you can handle the timer accordingly. For example, you can re-start an
expired one-time timer using the Start() method.

SYNTAX
bool Expired()

If the timer has expired, the method returns TRUE. If the timer has not yet expired or if the timer
has been stopped, the method returns FALSE.

EXAMPLE

The following example demonstrates an ExXp i red(Qmethod in an OnTimer () routine that
checks whether a one-time timer has expired and re-starts it if it has expired.

CFPM_Timer m_oTimer2; //declared in header file
void CUFPT_FPM_Application::Initialize()
{

}
void CUFPT_FPM_Application::OnTimer()

m_oTimer2_Start(FPM_TF_ONETIME, 0);

if (n_oTimer2.Expired())

{
m_oTimer2._.Start(FPM_TF_ONETIME, 2000);
}
}
Stop ()

You can use the Stop(Qmethod of the CFPM_Timer class to stop a timer that is running. You can
use this method in the Work (), OnTimer (), Shutdown() routines of an FPM application, and
you can use it in the Shutdown(Qroutine of an FPM driver.

SYNTAX
bool Stop(Q)

If the timer has expired, the method returns TRUE. If the timer has not yet expired or if the timer
has been stopped, the method returns FALSE.

i.LON SmartServer Freely Programmable Module User’s Guide 209

210

EXAMPLE

The following example demonstrates how you can use the Stop()method to stop a timer that is
running.

m _oTimerl.Stop();
StopAllTimers()

You can use the StopAl I Timers()method of the CFPM_Timer class to stop all currently active
timers. You can use this method in the Work (), OnTimer (), Shutdown() routines of an FPM
application, and you can use it in the Shutdown(Qroutine of an FPM driver.

SYNTAX
bool StopAllTimers()

If any timer has expired, the method returns TRUE. If no timer has expired or has been stopped,
the method returns FALSE.

EXAMPLE
The following example demonstrates a StopAl I Timers()method that stops all existing timers.
StopAllTimers();

IsSRunning()

You can use the IsRunning(Qmethod to check whether a timer is running or has been stopped.
This method may be useful during runtime.

SYNTAX
bool IsRunning()

If the referenced timer is running, the method returns TRUE. If the timer has expired or has been
stopped, the method returns FALSE.

EXAMPLE

The following example demonstrates an 1SRunning()method that checks whether a timer is
running and executes some code if it is.

if (n_oTimerl.IsRunning())
{

//execute code

}
GetMode()

You can use the GetMode () method to check the type of the referenced timer (repeating or one-time)
when it is running. This method may be useful during runtime.

SYNTAX
FPM_TimerFlags_t GetMode()

This method returns the type of timer (repeating or one-time) if the referenced timer is running. If
the referenced timer has been stopped, this method returns UNKNOWN.

EXAMPLE

The following example demonstrates a GetMode () method that checks the type of a timer that is
running.

Appendix A - Programmer’s Reference

FPM_TimerFlags_t timerMode;
timerMode = m _oTimerl. GetMode();

GetTimeoutMillis()

You can use the GetTimeoutMi Il is(Qmethod to check the timeout interval of the referenced
timer when it is running. This method may be useful during runtime.

SYNTAX
uint_t GetTimeoutMillis()

This method returns the timeout interval (in milliseconds) of the referenced timer if it is running.
If the referenced timer has been stopped, this method returns ‘~0’.

EXAMPLE

The following example demonstrates a GetT imeoutMi I I 1s()method that checks the timeout
interval of a timer that is running.

int timerlnterval;

timerinterval = m_oTimerl.GetTimeoutMillis();

RS-232 Interface Methods

You can use RS-232 interface methods to connect an FPM driver to the devices attached to the RS-232
serial port on the SmartServer, initialize the RS-232 connection, read and write values to the data
points on the devices, and close the RS-232 connection . For more information on connecting a device
to the RS-232 serial port, see the i.LON SmartServer Hardware Guide.

rs232_open()

You can use the rs232_open(Qmethod in the Initial 1ze() routine to open the RS-232 interface
on the SmartServer. After you open the RS-232 interface, you must use the rs232_ioctl ()
method to initialize the connection. See the next section, rs232_ioctl(), for more information on how
to do this.

SYNTAX
int rs232 _open(unsigned int BaudRate);

The BaudRate parameter specifies the baud rate at which RS-232 interface communicates with
the serial port. See the documentation for your RS-232 interface for more information on baud
rates supported for your device. The i.LON e3 and SmartServer hardware support connections to
any baud rate up to 115,200 with a buffer size of 512 bytes. When setting the baud rate, you
should consider the number of bytes the interface sends over the network per second, the
calculations performed between poll cycles, and whether a handshake between the interface and
the hardware device is required.

The method returns the file handle (a value greater than or equal to 0) on success, and it returns a
negative value on failure. A failure could occur if another FPM is using the interface, or if the
interface is not properly connected to the RS-232 port.

Verify that the file handle is specified in a global variable so that you can reference it from the
Work() and Shutdown () routines.

EXAMPLE

The following example demonstrates a rs232_open () method that opens an RS-232 connection
with a baud rate of 9600.

rs232_open(9600);

i.LON SmartServer Freely Programmable Module User’s Guide 211

rs232_ioctl()

You can use the rs232_ioctl () method in the Initial ize() routine to initialize and send
commands to the RS-232 interface. You should call this method immediately after opening the RS-
232 interface with the rs232_open() method. Note that you can send commands to the RS-232
interface using other I/O control methods besides the rs232_ioctl () method.

SYNTAX
int rs232 ioctl(int fd, int cmd, iInt data);

The Fd parameter specifies the file handle that was returned when the RS-232 interface was
opened with the rs232_open() method.

The cmd parameter specifies the command to be sent to the RS-232 interface. The data
parameter specifies the corresponding value to be used with the cmd parameter. The values for
the cmd and data parameters are defined in the FPMLibrary.h file in the
iLON/Development/eclipse/plugins/com.echelon.eclipse.ilon100.fpm_0.9.0/compiler/echelon/fpm
/include folder in your LONWORKS directory. The values you can specify for the cmd and data
parameters are as follows:

cmd parameter data parameter

10CTL_BAUDRATE Specify the baud rate at which the RS-232 interface will
communicate with the serial port.

I0CTL_SIO_HW_OPTS_SET Specify the hardware options for the RS-232 interface.

If the RS-232 interface supports hardware handshakes, enter
the following: HUPCL | CREAD | CS8

If the RS-232 interface does not support hardware handshakes,
enter the following:

HUPCL | CREAD | CS8 | CLOCAL

See the FPMLibrary.h file for more information on the values
you can pass in as the data parameter when the cmd
parameter is set to IOCTL_SI0_HW_OPTS_SET.

I0CTL_DATA_LENGTH Specify the data bit size (in bits) to be used for messages sent
by the RS-232 interface.

I0CTL_PARITY Specify the number of parity bits to be used for messages sent
by the RS-232 interface. A parity bit is an extra bit used to
check for errors in groups of data bits transferred between
devices.

I0CTL_STOPBIT Specify the number of stop bits to be used for messages sent
by the RS-232 interface.

10CTL_RCVBUFSZ Specify the buffer size (in bytes) to be used to receive
messages from the RS-232 interface.

10CTL_RCVTIMEOUT Specify the timeout period (in seconds) after which the RS-232
interface stops trying to receive failed messages from the
network.

I0CTL_SNDTIMEOUT Specify the timeout period (in seconds) after which the RS-232
interface stops trying to send a failed messages over the
network.

212 Appendix A - Programmer’s Reference

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-232 port.

EXAMPLE

The following example demonstrates a rs232_1octl (Qmethod that sets the buffer size to be
used for the RS-232 connection to 256 bytes.

rs232_ioctl (1, I0CTL_RCVBUFSZ, 256);
rs232_read()

You can use the rs232_read() method in the OnTimer () routine to read data from the RS-232
interface.

SYNTAX
int rs232_read(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-232 interface was opened with
the rs232_open() method.

The buf parameter specifies a pointer to the memory area to where the data read from the RS-232
interface is to be stored. The memory area must have enough space to store the data or else the
SmartServer may fail as a result of a call to this method.

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-232 port.

EXAMPLE
rs232_read(RS232_fd, someBuffer, 1);

rs232_write()

You can use the rs232_wr ite(Qmethod in the OnTimer Qroutine to write data to the RS-232
interface.

SYNTAX
int rs232 write(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-232 interface was opened with
the rs232_open() method.

The buf parameter specifies a pointer to the memory area containing the data to be written to the
RS-232 interface.

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the number of bytes read upon success, and it returns -1 upon failure. A
failure could occur if another FPM is using the interface, or if the interface is not properly
connected to the RS-232 port.

EXAMPLE

The following example demonstrates a rs232_wr ite (Qmethod that writes to the RS-232
interface.

rs232_write(RS232_fd, someBuffer, strlen(someBuffer));

rs232_close()

You can use the rs232_close()method in the Shutdown) routine to close the RS-232
interface.

i.LON SmartServer Freely Programmable Module User’s Guide 213

SYNTAX
int rs232 _close(int fd);

The Fd parameter is the file handle returned when the RS-232 interface was opened with the
rs232_open() method.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-232 port.

EXAMPLE

The following example demonstrates a rs232_close () method that ends an RS-232
connection.

rs232_close(RS232_fd);

RS-485 Interface Methods

You can use RS-485 interface methods to connect an FPM driver to the devices attached to the RS-485
serial port on the SmartServer, initialize the RS-485 connection, read and write values to the data
points on the devices, and close the RS-485 connection. For more information on connecting a device
to the RS-485 serial port, see the i.LON SmartServer Hardware Guide.

rs485_open()

You can use the rs485_open()method in the Initial ize() routine to open the RS-485 interface.
After you open the RS-485 interface, you must use the rs485_ioctl () method to initialize the
connection. See the next section, rs485_ioctl(), for more information on how to do this.

SYNTAX
int rs485 open(int BaudRate);

The BaudRate parameter specifies the baud rate at which RS-485 interface communicates with
the serial port. See the documentation for your RS-485 interface for more information on baud
rates supported for your device. The i.LON e3 and SmartServer hardware support connections to
any baud rate up to 115,200 with a buffer size of 512 bytes. When setting the baud rate, you
should consider the number of bytes the interface sends over the network per second, the
calculations performed between poll cycles, and whether a hardware handshake between the
interface and the hardware device is required.

The method returns the file handle (a value greater than or equal to 0) on success, and it returns a
negative value on failure. A failure could occur if another FPM is using the interface, or if the
interface is not properly connected to the RS-485 port.

Verify that the file handle is specified in a global variable so that you can reference it from the
Work() and Shutdown() routines.

EXAMPLE

The following example demonstrates a rs485_open () method that opens an RS-485 connection
with a baud rate of 9600.

rs485 open(9600);
rs485 setparams()

You can use the rs485_setparams() method in the Initial 1ze() routine to set the operating
parameters of the RS-485 interface. You should call this method to initialize the RS-485 interface
immediately after opening it with the rs485_open() method.

214 Appendix A - Programmer’s Reference

SYNTAX

int rs485 setparams(int fd, unsigned int BaudRate, EDatalength
DataLength, EParity Parity, EStopBits StopBits);

The fd parameter is the file handle returned when the RS-485 interface was opened with the
rs485_open() method.

The BaudRate parameter specifies the baud rate at which RS-485 interface communicates with
the serial port.

The Datalength parameter specifies the data bit size to be used for messages sent by the
RS-485 interface. You can specify a bit size of 5, 6, 7, or 8 bits.

The Par ity parameter specifies the parity bit to be used for messages sent by the RS-485
interface. A parity bit is an extra bit used to check for errors in groups of data bits transferred
between devices. You can specify a parity bit that is odd or even.

The StopBits parameter specifies the number of stop bits to be used for messages sent by the
RS-485 interface.

For more information on these options, see the FPMLibrary.h file in the
iLON/Development/eclipse/plugins/com.echelon.eclipse.ilon100.fpm_0.9.0/compiler/echelon/fpm
/include folder in your LONWORKS directory

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-485 port.

rs485 ioctl()

You can use the rs485_ioctl () method in the Initial ize() routine to send commands to the
RS-485 interface.

SYNTAX
int rs485 ioctl(int fd, int cmd, int data);

The fd parameter specifies the file handle that was returned when the RS-485 interface was
opened with the rs485_open() method.

The cmd parameter specifies the command to be sent to the RS-485 interface. The data
parameter specifies the corresponding value to be used with the cmd parameter. The values for
the cmd and data parameters are defined in the FPMLibrary.h file in the
iLON/Development/eclipse/plugins/com.echelon.eclipse.ilon100.fpm_0.9.0/compiler/echelon/fpm
/include folder in your LONWORKS directory. The values you can specify for the cmd and data
parameters are as follows:

cmd parameter data parameter

I10CTL_BAUDRATE Specify the baud rate at which the RS-485 interface will
communicate with the serial port on the i.LON.

10CTL_RCVTIMEOUT Specify the timeout period (in seconds) after which the RS-485
interface stops trying to receive failed messages from the
network.

I0CTL_SNDTIMEOUT Specify the timeout period (in seconds) after which the RS-485
interface stops trying to send a failed messages over the
network.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-485 port.

i.LON SmartServer Freely Programmable Module User’s Guide 215

216

EXAMPLE

The following example demonstrates a rs485_1octl (Qmethod that sets the buffer size to be
used for the RS-485 connection to 256 bytes.

rs485_icotl(1, I10CTL_RCVBUFSZ, 256);

rs485 read()

You can use the rs485_read() method in the OnTimer () routine to read data from the RS-485
interface.

SYNTAX
int rs485 read(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-485 interface was opened with
the rs485_open() method.

The buf parameter specifies a pointer to the memory area to where the data read from the RS-485
interface is to be stored. The memory area must have enough space to store the data or else the
SmartServer may fail as a result of a call to this method.

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-485 port.

EXAMPLE

The following example demonstrates a rs485_read () method that reads data from the RS-485
interface.

rs485 read(RS485 fd, someBuffer, 1);

rs485 write()

You can use the rs485_wr ite()method in the OnTimer (Qroutine to write data to the RS-485
interface.

SYNTAX
int rs485 write(int fd, unsigned char * buf, int length);

The Fd parameter specifies the file handle returned when the RS-485 interface was opened with
the rs485_open() method.

The buf parameter specifies a pointer to the memory area containing the data to be written to the
RS-485 interface.

The Iength parameter specifies the maximum number of bytes that are to be read.

This method returns the number of bytes read upon success, and it returns -1 upon failure. A
failure could occur if another FPM is using the interface, or if the interface is not properly
connected to the RS-485 port.

EXAMPLE

The following example demonstrates a rs485_wr ite(Qmethod that writes to the RS-485
interface.

rs485 write(RS485 fd, someBuffer, strlen(someBuffer));

Appendix A - Programmer’s Reference

rs485 close()

You can use the rs485_close()method in the Shutdown () routine to close the RS-485
interface.

SYNTAX
int rs485 close(int fd);

The Fd parameter is the file handle returned when the RS-485 interface was opened with the
rs485_open() method.

This method returns the 0 upon success, and it returns -1 upon failure. A failure could occur if
another FPM is using the interface, or if the interface is not properly connected to the RS-485 port.

EXAMPLE

The following example demonstrates a rs485_close () method that ends an RS-485
connection.

rs485 close(RS485_fd);

File Access Methods

You can read and write to data files on the SmartServer using the following ANSI ‘C’ file methods:
fopen(), fread(), fwrite(), fseek()and, fclose().

fopen()

You can use the Fopen()method to open a file and assign it a stream that can be identified by other
methods.

SYNTAX
FILE fopen (const char * filename, const char * mode);

The Fi lename parameter specifies the name of the file to be opened. This parameter must
follow the file name specifications of the Eclipse SDK environment, and it may include a file path.

The mode parameter specifies the file access mode, which determines the operations that can be
performed on the file stream returned by this method. The file stream can either be a text or a
binary file. The mode can be one of the following values:

r Opens an existing text file for reading.

w Creates an empty text file for writing. If a file with the same name already exists, its
content is erased and the specified file is treated as a new empty file.

a Appends data to the end of an existing text file. If the specified file does not exist, a new
file is created.

r+ Opens an existing text file for both reading and writing.

w+ Creates an empty text file for both reading and writing. If a file with the same name

already exists, its content is erased and the specified file is treated as a new empty file.

a+ Opens an existing text file for reading and appending data. All writing operations are
performed at the end of the file, protecting the previous content to be overwritten.

You can reposition the internal pointer to anywhere in the file for reading using the
Tseek(Q)method, but writing operations will move it back to the end of file.

If the specified file does not exist, a new file is created.

rb Opens an existing binary file for reading.

i.LON SmartServer Freely Programmable Module User’s Guide 217

218

wb Creates an empty binary file for writing. If a file with the same name already exists, its
content is erased and the specified file is treated as a new empty file.

ab Appends data to the end of an existing binary file. If the specified file does not exist, a
new file is created.

r+b Opens a existing binary file for both reading and writing.

w+b Creates an empty binary file for both reading and writing. If a file with the same name
already exists, its content is erased and the specified file is treated as a new empty file.

a+b Opens an existing binary file for reading and appending data. All writing operations are
performed at the end of the file, protecting the previous content to be overwritten.

You can reposition the internal pointer to anywhere in the file for reading using the
Tseek(Q)method, but writing operations will move it back to the end of file.

If the specified file does not exist, a new file is created.
If the file has been opened successfully, this method returns a pointer to a FILE object that is used
to identify the stream in all further operations. Otherwise, a null pointer is returned.
EXAMPLE

The following example demonstrates an Fopen()method that creates a new text file for writing
and assigns it to a file stream.

FILE * pFile;
pFile = fopen ("myfile.txt","w");
fread()

You can use the Fread(Q)method to read a block of data from a file stream. This method reads an
array of elements from the file stream and stores the data in a block of memory on the SmartServer.

Note: The SmartServer does not have memory protection. As a result, an FPM can write to any
memory area on the SmartServer, which could cause the SmartServer to fail or corrupt the data of
another embedded applications on the SmartServer. Therefore, you should use the greatest possible
care when implementing your freely programmable modules.

SYNTAX

size_t fread (void * ptr, size_t size, size_t count, FILE *
stream);

The ptr parameter specifies the block of memory to be used to store the data read from the file
stream with a minimum size of (size*count) bytes.

The size parameter specifies the size (in bytes) of each element to be read.

The count parameter specifies the number of elements to be read, each one with a size of size
bytes.

The stream parameter specifies a pointer to a F I LE object that specifies an input stream.

This method returns a Size_t object, which is an integral data type that specifies the total
number of elements successfully read. If this number differs from count, either an error occurred
or the internal End-of-File internal indicator was reached.

EXAMPLE
The following example demonstrates an fread () method.

FILE *pFile;
int 1Temp;

Appendix A - Programmer’s Reference

http://www.cplusplus.com/size_t

long FilePtr = 0; // starting index of file
char buf[200] ; // input buffer

char len = 200;

char Filename[] = "/web/user/mUartTxFile.txt";

if((pFile = fopen(Filename,"r')) == NULL)

printf("’Can*t open 1.LON file = %s /n', Filename);

else
{
iTemp = fseek(pFile, FilePtr, SEEK SET);
if(iTemp)
{
printf("'FSEEK failed/n™);
}
else
{
iTemp = fread(buf, 1, len ,pFile);
fclose(pFile);
}
}

fseek()

You can use the Fseek(Qmethod to set the position indicator associated with the a file stream to a
new position.

SYNTAX
int fseek (FILE * stream, long int offset, intorigin);

The stream parameter specifies a pointer to a FILE object that identifies the stream.
The offset parameter specifies the number of bytes to be offset from origin.

The origin parameter specifies the position from where offset is to be added. You can specify
the origin using one of the following three constants:

SEEK_SET Beginning of the file
SEEK_CUR Current position of the file pointer
SEEK_END End of the file

If this position indicator has been moved successfully, this method returns a zero value.
Otherwise, it returns a non-zero value.

EXAMPLE

The following example demonstrates an Fseek () method that moves the position indicator two
bytes from the beginning of an existing file.

FILE * pFile;
fseek (pFile, 2 , SEEK_SET);

fwrite()

You can use the Fwrite(Qmethod to write an array of elements from a block of memory on the
SmartServer to the current position in a file stream.

i.LON SmartServer Freely Programmable Module User’s Guide

SYNTAX

size_t fwrite (constvoid * ptr, size_tsize, size_tcount, FILE*
stream);

219

The ptr parameter specifies the array of elements to be written to the file stream.
The size parameter specifies the size (in bytes) of each element to be written.

The count parameter specifies the number of elements to be written, each one with a size of size
bytes.

The stream parameter specifies a pointer to a FILE object that specifies an output stream.

This method returns a Size_t object, which is an integral data type that specifies the total
number of elements successfully written. If this number differs from count, an error has occurred.

EXAMPLE

The following example demonstrates an fwr i te () method that writes some data to an existing
text file.

FILE *pFile;

char Filename[] = "/web/user/mUartTxFile.txt";

char buf[] = “Test String”; // output buffer
long len = 11;

if((pFile = fopen(Filename,"a')) == NULL)

printf(“Can®"t open or create i.LON 100 file = %s /n",
Filename);

}

else

{
fwrite(buf,1,len,pFile);
fclose(pFile);
printfF("'Wrote %d bytes to file = %s /n", len, Filename);

fclose()

You can use the Fclose () method to close a file.
SYNTAX
int fclose (FILE * stream);

The stream parameter specifies a pointer to a FILE object that specifies the file stream to be
closed.

If the file has been closed successfully, this method returns a zero value. Otherwise, it returns
EOF (End-of-File).

EXAMPLE

The following example demonstrates an Fclose () method that closes a file stream.

FILE * pFile;
fclose (pFile)

220 Appendix A - Programmer’s Reference

http://www.cplusplus.com/size_t

Appendix B

FPM Development and Deployment
CheckKklist

This checklist outlines the steps required to develop and deploy your FPMs on the
SmartServer.

i.LON SmartServer Freely Programmable Module User’s Guide 221

1.

Create User-Defined Functional Profile Template
(UFPT)

NodeBuilder Resource Editor

Create a new FPM resource file set for company.

Request temporary manufacturer ID from
LonMark www.lonmark.org/mid if you do
not have one or, if your company has many
FPM developers.

Must create scope 5 resource file set if
integrating FPM application with an LNS
Application such as the LonMaker tool.

Create a new functional profile template or create
one that inherits from an existing Standard
Functional Profile Template (SFPT).

Add NVs and CPs to the UFPT which your FPM will
read and write.

Generate company’s FPM resource file set

Upload company’s updated FPM resource file set to
root/lonWorks/types/User/<YourCompany> folder
on SmartServer flash disk.

u]

Reboot SmartServer.

2.

Create Device Interface (XIF) File

Text Editor (e.g. Notepad)
LonWorks Interface Developer

Use text editor such as Notepad to create a model file
(-nc extension).

Use i.LON SmartServer LonWorks Interface
Developer tool convert model file to device interface
(XIF) file.

u}

Upload XIF file to root/lonWorks/Import/
<YourCompany> folder on SmartServer flash disk.

3.

Write FPM Application or Driver

i.LON SmartServer Programming Tool

u}

Create new FPM project from the UFPT.

O

Write and build FPM application or driver.

Must have full version of i. LON
SmartServer Programming Tools to build
FPM.

The data points declared in the FPM must
be in the UFPT.

4,

Deploy FPM Application or Driver on Development
SmartServer

i.LON SmartServer Programming Tool
i.LON SmartServer

LonMaker Tool

Adobe Contribute CS3/i.LON Vision

222

Appendix B — FPM Development and Deployment Checklist

http://www.lonmark.org/mid

Use i.LON SmartServer Programming Tool to
upload FPM executable module (.app extension) to
root/modules/user/<YourCompany> folder on
SmartServer flash disk.

Must have FPM license on SmartServer to
upload FPMs.

Select Default Web Page check box in
Deployment Settings window of Install
FPM Module dialog to create custom
FPM configuration Web page.

Use SmartServer to verify that a network
management service has been selected (LNS or
Standalone).

If using LNS mode (LNS Auto or LNS
Manual), FPM devices must have static
interfaces.

Must use an LNS mode in order to bind
data points in your FPM application to
other data points with LONWORKS
connections.

Must use Standalone mode if FPM devices
use dynamic interfaces.

Use SmartServer to add new internal FPM device on
LONWORKS channel.

If FPM device has static interface, select
XIF file from root/lonWorks/Import/
<YourCompany> folder.

If FPM device has dynamic interface,
select v40 XIF file from
root/lonworks/import/Echelon/iLON100
folder.

If FPM device has dynamic interface, add functional
block to device based on UFPT used by FPM.

If binding FPM data points with LONWORKS
connections, commission FPM device using
SmartServer or LonMaker tool

Can commission device from SmartServer
tree or LNS tree in SmartServer Web
interface.

Once FPM device is commissioned in the
LonMaker tool, cannot use the
SmartServer to decommission the device
or set the device application offline.

Can only use the LonMaker tool to
decommission and re-commission the
device and set the device application
online or offline.

Test FPM application with View — Data Points Web
page in SmartServer Web interface.

Connect FPM data points with LONWORKS
connections or Web connections.

Can create LonWorks connections with
LNS tree in SmartServer Web interface or
the LonMaker tool.

Can create Web connections with
SmartServer tree in SmartServer Web
interface

Use Adobe Contribute CS3 with i.LON Vision
toolkit to create custom FPM configuration Web
Pages.

To view custom FPM configuration Web
page, click General above navigation pane
on left side of the SmartServer Web
interface and then click a functional block
under FPM device.

i.LON SmartServer Freely Programmable Module User’s Guide

223

224

5. Deploy FPM Applications or Drivers on Multiple
SmartServers in Field

FTP Client such as Internet Explorer 7

Use FTP client to copy the following files to the
folder listed in the colunmn to the right on each
SmartServer:

Each SmartServer must have FPM license
installed on it.

o FPM License (if not pre-installed on SmartServer).

root/config/license

Resource files ((ENU, fmt, .fpt, .is, and .typ files).

root/lonworks/types/user/<YourCompany>

Device interface (XIF) files (.xif extension)*.

*If the FPM application uses static functional blocks.

root/lonworks/import/<YourCompany>

g | FPM executable modules (.app extension).

root/modules/user/<YourCompany>

Custom FPM configuration Web pages (.htm
extension)*.

*If created.

root/web/config/Fb

Appendix B — FPM Development and Deployment Checklist

Appendix C

I.LON SmartServer Software License
Agreement

When installing the i.LON SmartServer software, you must agree to the terms of the
software license agreement detailed in this appendix.

i.LON SmartServer Freely Programmable Module User’s Guide 225

i.LON® SmartServer Software License Agreement

NOTICE

This is a legal agreement between you (“You” “Your”) and Echelon Corporation (“Echelon”). YOU
MUST READ AND AGREE TO THE TERMS OF THIS SOFTWARE LICENSE AGREEMENT
BEFORE ANY SOFTWARE CAN BE DOWNLOADED OR INSTALLED OR USED. BY
CLICKING ON THE “ACCEPT” BUTTON OF THIS SOFTWARE LICENSE AGREEMENT, OR
DOWNLOADING SOFTWARE, OR INSTALLING SOFTWARE, OR USING SOFTWARE, YOU
ARE AGREEING TO BE BOUND BY THE TERMS AND CONDITIONS OF THIS SOFTWARE
LICENSE AGREEMENT. IF YOU DO NOT AGREE WITH THE TERMS AND CONDITIONS OF
THIS SOFTWARE LICENSE AGREEMENT, THEN YOU SHOULD EXIT THIS PAGE AND NOT
DOWNLOAD OR INSTALL OR USE ANY SOFTWARE. BY DOING SO YOU FOREGO ANY
IMPLIED OR STATED RIGHTS TO DOWNLOAD OR INSTALL OR USE SOFTWARE AND
YOU MAY RETURN IT TO THE PLACE YOU OBTAINED IT FOR A FULL REFUND (IF
APPLICABLE).

i.LON® SmartServer Software License Agreement

226

Echelon grants You a non-exclusive, non-transferable license to use the Licensed Software and
accompanying documentation and any updates or upgrades thereto provided by Echelon according to
the terms set forth below. As used herein:

e "Licensed Software" means the i.LON Utilities, . LON System Image and the Programming Tools.

e "i.LON Utilities" means the i.LON Internet Server computer software utilities listed in the
utilities.txt file, and associated media, printed materials, and online or electronic documentation,
including without limitation any and all executable files, add-ons, stencils, templates, i. LON
Vision shapes, SmartShapes® symbols, SOAP APIs, filters, tutorials, help files, Web pages and
other files, that accompany such software or are in the accompanying documentation.

e "iLLON Server" means the Echelon i. LON SmartServer.

e "i.LON System Image" means the firmware preloaded on an i.LON Server or listed in the
system.txt file, and associated media, printed materials, and online or electronic documentation,
including without limitation any and all executable files, tutorials, help files, Web pages and other
files, that accompany such software or are in the accompanying documentation.

e “LNS Proxy” means the driver that allows access to the LNS Server, synchronization between the
1.LON Server and the LNS database, and copying of external data points from the LNS database to
the i.LON Server. The LNS Proxy is comprised of the Apache Tomcat 5.5 servlet container, the
Codehaus XFire 1.2.6 SOAP framework, the LnsNative.dll file which accesses LNS, the
LnsProxy-4.0.war file which contains the Web application files.

e “LNS Server” means the executable files generated by running the Echelon LNS Redistributable
Maker (version 3.0 or higher) product identified for use by LNS servers.

e "709.1” means the ANSI/CEA-709.1 Control Networking Protocol, also known as the EN14908
protocol. Echelon’s implementation of this protocol is known as the LonTalk protocol.

e "[P-852 Channel" means a collection of devices that communicate using the ANSI/CEA-852
protocol.

e "Control" means to write Network Variable values as defined by the 709.1 Protocol using the
i.LON Utilities or SOAP protocol.

e "Configure" means to provide a valid 709.1 Domain, Subnet, and Node address, as well as valid
Group, Network Variable Selector, and Message Tag values, and device state information as
defined by the 709.1 Protocol to the i. LON Server, and to set configuration properties on an i. LON
Server using the i.LON Ultilities or SOAP protocol.

Appendix C — i.LON SmartServer Software License Agreement

e "Monitor" means to read, process, and view Network Variable values, Application Message
contents, and device state information as defined by the 709.1 Protocol using the i.LON Utilities
or SOAP protocol.

e “Programming Tools” means the (i) GNU Compiler; (ii) Header Files; and (iii) Libraries, all from
the Wind River Platform for Industrial Devices 3.2 and any subsequent versions thereof.

e “SOAP API” means the programmatic interface used to access an i.LON Server or an LNS Proxy
using the SOAP protocol.

If the Licensed Software is being provided to You as an update or upgrade to software which You have
previously licensed, then You agree to destroy all copies of the prior release of this software within
thirty (30) days after installing the Licensed Software; provided, however, that You may retain one (1)
copy of the prior release for backup, archival and support purposes.

LICENSE

You may:

(a) use the i.LON Ultilities internally to create [P-852 Channels, each with a minimum of one (1)
1.LON Server, and to Monitor, Control, and Configure i.LON Servers;

(b) copy the i.LON Ultilities as reasonably necessary for such permitted internal use and for backup or
archival purposes consistent with Your archive procedures, provided that You reproduce, unaltered, all
proprietary notices on or in such copies;

(c) use the Programming Tools solely within the Echelon freely programmable modules (“FPM”)
framework to create and install FPMs on the i.LON Server.

(d) use the Programming Tools solely with an i.LON Server;

(e) use the LNS Proxy and LNS Proxy SOAP API solely to access an LNS Server from an i.LON
Server or a client application.

(f) make one (1) copy of the i.LON System Image for the purpose of loading it into an i.LON Server in
order to replace or update the i. LON System Image on the i.LON Server and one (1) copy for backup
or archival purposes consistent with Your archive procedures, provided that You reproduce, unaltered,
all proprietary notices on or in such copies; and

(g) transfer Your rights under this Agreement to an end user of the Licensed Software; provided that (i)
You require the transferee to execute both copies of the Software License Transfer Agreement
included with the Licensed Software, and (ii) You retain one (1) signed original thereof and furnish
Echelon with a copy of same upon request. This right of transfer is exercisable on a one-time-only
basis, and Your transferee shall have no right whatsoever to further transfer any rights to the Licensed
Software.

You may not:

(a) use the Licensed Software to commission devices in databases that are or have been created or
modified using the LonMaker tool;

(b) use the Licensed Software for purposes other than the purposes set forth above;

(c) copy the Licensed Software, or any part thereof, except as expressly permitted above, or copy the
accompanying documentation;

(d) modify, translate, reverse engineer, decompile, disassemble or otherwise attempt (i) to defeat,
avoid, bypass, remove, deactivate, or otherwise circumvent any software protection mechanisms in the
Licensed Software, including without limitation any such mechanism used to restrict or control the
functionality of the Licensed Software, or (ii) to derive the source code or the underlying ideas,
algorithms, structure or organization from the software from the Licensed Software (except to the
extent that such activities may not be prohibited under applicable law), or

i.LON SmartServer Freely Programmable Module User’s Guide 227

(e) distribute, rent, transfer or grant any rights in the Licensed Software or modifications thereof or
accompanying documentation in any form to any person without the prior written consent of Echelon.

This license is not a sale. The Licensed Software may contain or be derived from materials provided to
Echelon under license from a third party supplier. Title and copyrights to the Licensed Software,
accompanying documentation and any copy made by You remain with Echelon or its suppliers.
Unauthorized copying of the Licensed Software or the accompanying documentation, or failure to
comply with the above restrictions, will result in automatic termination of this license and will make
available to Echelon and its suppliers other legal remedies. You agree to indemnify, to the fullest
extent permitted by law, Echelon and its suppliers (“Indemnitees”), for any third party infringement
claims that may arise as a result of Your use of any Licensed Software in violation of the license
granted in this provision.

You may make appropriate and truthful reference to Echelon and Echelon products and technology in
Your company and product literature; provided that You properly attribute Echelon's trademarks. No
license is granted, express or implied, under any Echelon trademarks, trade names or service marks.

OPEN SOURCE AND THIRD PARTY SOFTWARE

(a) Open Source Software. The Licensed Software may include, or may be distributed on the same
media or in the same download with, software that is subject to open source licensing terms ("Open
Source Software") which terms are available at www.echelon.com. Open Source Software shall remain
subject to such terms. The Open Source Software is provided on an “AS IS” BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING WITHOUT LIMITATION ANY WARRANTIES OR CONDITIONS OF TITLE, NON-
INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, AND
ALL SUCH WARRANTIES ARE HEREBY DISCLAIMED. NEITHER ECHELON NOR THE
AUTHORS OF THE OPEN SOURCE SOFTWARE SHALL HAVE ANY LIABILITY FOR ANY
DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING WITHOUT LIMITATION LOST PROFITS), HOWEVER CAUSED
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
USE OR DISTRIBUTION OF THE OPEN SOURCE SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES. Copyrights to the Open Source Software are held by the
copyright holders indicated in the copyright notices in the corresponding source files. If the Open
Source Software license also requires source code to be made available, such source code is available
at www.echelon.com. Without limiting the foregoing, the Licensed Software may be distributed on the
same media or in the same download with certain software that is subject to a General Public License
(GPL) ("GPL Software"), and such GPL Software is licensed to You free of charge.

(b) Wind River Software. The Licensed Software may contain software licensed from Wind River
Systems, Inc. (“Wind River”). The license terms applicable to software licensed to Echelon by Wind
River are incorporated herein.

228 Appendix C — i.LON SmartServer Software License Agreement

http://www.echelon.com/

TERMINATION

This license will continue until terminated. Unauthorized copying of the Licensed Software or failure to
comply with the above restrictions will result in automatic termination of this Agreement and will make
available to Echelon other legal remedies. This license will also automatically terminate if You go into
liquidation, suffer or make any winding up petition, make an arrangement with Your creditors, or suffer
or file any similar action in any jurisdiction in consequence of debt. Upon termination of this license for
any reason You will destroy all copies of the Licensed Software. Any use of the Licensed Software after
termination is unlawful.

TRADEMARKS

You may make appropriate and truthful reference to Echelon, Echelon products and technology in
Your company and product literature; provided that You properly attribute Echelon’s trademarks and
do not use the name of Echelon or any Echelon trademark in Your name or product name. No license
is granted, express or implied, under any Echelon trademarks, trade names, trade dress or service
marks.

LIMITED WARRANTY AND DISCLAIMER

Echelon warrants that, for a period of ninety (90) days from the date of delivery or transmission to
You, the Licensed Software under normal use will perform substantially in accordance with the
Licensed Software specifications contained in the documentation accompanying the Licensed
Software. Echelon's entire liability and Your exclusive remedy under this warranty will be, at
Echelon's option, to use reasonable commercial efforts to attempt to correct or work around errors, to
replace the Licensed Software with functionally equivalent Licensed Software, or to terminate this
Agreement. EXCEPT FOR THE ABOVE EXPRESS LIMITED WARRANTIES, ECHELON AND
ITS SUPPLIERS MAKE AND YOU RECEIVE NO WARRANTIES OR CONDITIONS, EXPRESS,
IMPLIED, STATUTORY OR IN ANY COMMUNICATION WITH YOU, AND ECHELON AND
ITS SUPPLIERS SPECIFICALLY DISCLAIM ANY IMPLIED WARRANTY OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT
AND THEIR EQUIVALENTS. Echelon does not warrant that the operation of the Licensed Software
will be uninterrupted or error free or that the Licensed Software will meet Your specific requirements.

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF IMPLIED
WARRANTIES, SO THE ABOVE EXCLUSIONS MAY NOT APPLY TO YOU. YOU MAY ALSO
HAVE OTHER RIGHTS THAT VARY FROM STATE TO STATE AND JURISDICTION TO
JURISDICTION.

LIMITATION OF LIABILITY

IN NO EVENT WILL ECHELON OR ITS SUPPLIERS BE LIABLE FOR LOSS OF DATA, LOST
PROFITS, COST OF PROCUREMENT OF SUBSTITUTE GOODS, TECHNOLOGY OR
SERVICES OR OTHER SPECIAL, INCIDENTAL, PUNITIVE, CONSEQUENTIAL OR INDIRECT
DAMAGES ARISING FROM THE USE OF THE LICENSED SOFTWARE OR ACCOMPANYING
DOCUMENTATION, HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY
(INCLUDING NEGLIGENCE). THIS LIMITATION WILL APPLY EVEN IF ECHELON OR AN
AUTHORIZED DISTRIBUTOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES AND NOTWITHSTANDING THE FAILURE OF ESSENTIAL PURPOSE OF ANY
LIMITED REMEDY PROVIDED HEREIN. IN NO EVENT SHALL ECHELON'S OR ITS
SUPPLIERS' LIABILITY EXCEED THE AMOUNTS PAID FOR THE LICENSED SOFTWARE.
ALL LIABILITY UNDER THIS AGREEMENT IS CUMULATIVE AND NOT PER INCIDENT
AND BENEFIT ECHELON’S THIRD PARTY SUPPLIERS. YOU ACKNOWLEDGE THAT THE
AMOUNTS PAID BY YOU FOR THE LICENSED SOFTWARE REFLECT THIS REASONABLE
ALLOCATION OF RISK.

i.LON SmartServer Freely Programmable Module User’s Guide 229

SOME STATES OR OTHER JURISDICTIONS DO NOT ALLOW THE EXCLUSION OR
LIMITATION OF LIABILITY FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO THE
ABOVE LIMITATIONS AND EXCLUSIONS MAY NOT APPLY TO YOU.

SAFE OPERATION

YOU ASSUME RESPONSIBILITY FOR, AND HEREBY AGREE TO USE YOUR BEST
EFFORTS IN, ROUTING, MONITORING, CONTROLLING LONWORKS DEVICES TO
PROVIDE FOR SAFE OPERATION THEREOF, INCLUDING, BUT NOT LIMITED TO,
COMPLIANCE OR QUALIFICATION WITH RESPECT TO ALL SAFETY LAWS,
REGULATIONS AND AGENCY APPROVALS, AS APPLICABLE. THE NEURON CHIP, 709.1
PROTOCOL, NEURON CHIP FIRMWARE, i.LON SERVER, AND THE LICENSED SOFTWARE
ARE NOT DESIGNED OR INTENDED FOR USE AS COMPONENTS IN EQUIPMENT
INTENDED FOR SURGICAL IMPLANT INTO THE BODY, OR OTHER APPLICATIONS
INTENDED TO SUPPORT OR SUSTAIN LIFE, FOR USE IN FLIGHT CONTROL OR ENGINE
CONTROL EQUIPMENT WITHIN AN AIRCRAFT, OR FOR ANY OTHER APPLICATION IN
WHICH THE FAILURE OF THE NEURON CHIP, LONTALK PROTOCOL, NEURON CHIP
FIRMWARE, i.LON SERVER OR THE LICENSED SOFTWARE COULD CREATE A
SITUATION IN WHICH PERSONAL INJURY OR DEATH MAY OCCUR, AND YOU SHALL
HAVE NO RIGHTS HEREUNDER FOR ANY SUCH APPLICATIONS.

COMPLIANCE WITH EXPORT CONTROL LAWS

You agree to comply with all applicable export and re-export control laws and regulations, including
the Export Administration Regulations ("EAR") maintained by the United States Department of
Commerce. Specifically, You covenant that You shall not—directly or indirectly—sell, export, re-
export, transfer, divert, or otherwise dispose of any software, source code, or technology (including
products derived from or based on such technology) received from Echelon under this Agreement to
any country (or national thereof) subject to antiterrorism controls or U.S. embargo, or to any other
person, entity, or destination prohibited by the laws or regulations of the United States, without
obtaining prior authorization from the competent government authorities as required by those laws and
regulations. You agree to indemnify, to the fullest extent permitted by law, Echelon from and against
any fines or penalties that may arise as a result of Your breach of this provision. This export control
clause shall survive termination or cancellation of this Agreement.

LANGUAGE

The parties hereto confirm that it is their wish that this Agreement, as well as other documents relating
hereto, have been and shall be written in the English language only.

Les parties aux présentes confirment leur volonté que cette convention de méme que tous les
documents y compris tout avis qui s'y rattache, soient rédigés en langue anglaise.

GENERAL

This Agreement shall not be governed by the 1980 U.N. Convention on Contracts for the International
Sale of Goods; rather, this Agreement shall be governed by the laws of the State of California,
including its Uniform Commercial Code, without reference to conflicts of laws principles. This
Agreement is the entire agreement between us and supersedes any other communications or
advertising with respect to the Licensed Software and accompanying documentation. If any provision
of this Agreement is held invalid or unenforceable, such provision shall be revised to the extent
necessary to cure the invalidity or unenforceability, and the remainder of the Agreement shall continue
in full force and effect. If You are acquiring the Licensed Software on behalf of any part of the U.S.
Government, the following provisions apply. The Licensed Software and accompanying

230 Appendix C — i.LON SmartServer Software License Agreement

documentation were developed at private expense and are deemed to be "commercial computer
software" and "commercial computer software documentation", respectively, pursuant to DFAR
Section 227.7202 and FAR 12.212(b), as applicable. Any use, modification, reproduction, release,
performance, display or disclosure of the Licensed Software and/or the accompanying documentation
by the U.S. Government or any of its agencies shall be governed solely by the terms of this Agreement
and shall be prohibited except to the extent expressly permitted by the terms of this Agreement. Any
technical data provided that is not covered by the above provisions is deemed to be "technical
data/commercial items” pursuant to DFAR Section 227.7015(a). Any use, modification, reproduction,
release, performance, display or disclosure of such technical data shall be governed by the terms of
DFAR Section 227.7015(b). You agree not to export the Licensed Software in violation of the laws
and regulations of the United States or any other nation. Echelon’s direct and indirect licensors of
software incorporated into the Licensed Software are third party beneficiaries of this Agreement and
this Agreement is made expressly for the benefit of, and is enforceable by, Echelon and such licensors.

Echelon, LON, LonTalk, LonMaker, LonWorks, i.LON and Neuron are registered trademarks of
Echelon Corporation in the U.S. and other countries. SmartShapes is a U.S. registered trademark of
Microsoft Corporation.

i.LON SmartServer Freely Programmable Module User’s Guide 231

	Preface
	Welcome
	Purpose
	Audience
	Models
	i.LON SmartServer Programming Tools Versions
	i.LON SmartServer Programming Tools Applications
	Requirements
	Hardware Requirements
	Software Requirements
	i.LON SmartServer Requirements

	Creating FPM Application Licenses
	Related Reading
	Content
	For More Information and Technical Support
	Table of Contents

	Chapter 1: Introduction
	Overview of Freely Programmable Modules
	FPM Types
	Creating and Deploying FPMs
	Debugging FPMs
	Creating FPM Application Licenses

	Quick-Start FPM Exercise
	Step 1: Creating and Copying the FPM Template
	Step 2: Creating and Copying the Device Interface (XIF) File
	Step 3: Creating the FPM Project
	Step 4: Writing the FPM Application
	Step 5: Deploying the FPM Application on a SmartServer
	Uploading the FPM Application
	Creating an Internal FPM device

	Step 6: Testing the FPM Application
	Step 7: Connecting the FPM Data Points

	Chapter 2: Installing i.LON SmartServer Programming Tools
	Installation and Upgrading Overview
	Installing i.LON SmartServer Programming Tools
	Upgrading a Trial Version of i.LON SmartServer Programming T
	Updating the i.LON SmartServer Programming Tool
	Importing Existing FPM Projects
	Uninstalling i.LON SmartServer Programming Tools

	Chapter 3: Creating FPM Templates
	Creating FPM Templates Overview
	Creating User-Defined Functional Profile Templates
	Adding Network Variable and Configuration Property Types
	Generating and Copying the Updated FPM resource file set

	Chapter 4: Creating FPM Device Interface (XIF) Files
	Creating FPM Device Interface (XIF) Files Overview
	Creating a Model File
	Declaring Network Variables
	Declaring Configuration Properties
	Declaring Functional Blocks
	Using Include Directives
	Example Model Files
	Single Functional Block
	Multiple Functional Blocks with the Same UFPT
	Multiple Functional Blocks with Unique UFPTs
	Multiple Functional Blocks with Multiple UFPTs
	Multiple Functional Blocks with Multiple UFPTs and Same Data

	Saving your Model File

	Generating a Device Interface (XIF) File
	Using Long and Short Command Switch Forms
	Other Command Switches

	Chapter 5: Creating Freely Programmable Modules
	Creating FPMs Overview
	Creating New FPM Projects
	Viewing the Resource Files on a SmartServer
	Creating an FPM
	Updating Data Point Declarations
	Manually Importing All Data Point Declarations
	Manually Importing Individual Data Point Declarations

	Writing an FPM Application
	The Writing the FPM Application Initialize() Routine
	Declaring and Initializing Timers
	Starting Timers

	Writing the FPM Application Work() Routine
	Checking for Data Point Updates
	Reading Data Point Properties
	Reading Data Point Values
	Writing Data Point Values

	Writing the FPM Application OnTimer() Routine
	Writing the FPM Application Shutdown() Routine

	Writing an FPM Driver
	Writing the FPM Driver Initialize() Routine
	Writing the FPM Driver Work() Routine
	Writing the FPM Driver OnTimer() Routine
	Writing the FPM Driver Shutdown() Routine

	Compiling an FPM
	Checking Compile and Warning Errors
	Using Non-Latin Characters

	Debugging FPMs
	Using Wind River Workbench
	Using FPM Development Guidelines

	Chapter 6: Deploying Freely Programmable Modules on a SmartServer
	FPM Deployment Overview
	Uploading FPM Applications and Drivers
	Selecting a Network Management Service
	Using LNS Network Management Services
	Using Standalone Network Management

	Adding FPM Devices to the SmartServer
	Using a Static Device Interface
	Using a Dynamic Device Interface

	Commissioning FPM Devices
	Commissioning FPM Devices with the SmartServer
	Commissioning FPM Devices with the LonMaker Tool
	Recommissioning FPM Devices

	Testing FPM Applications
	Connecting FPM Data Points
	Creating LonWorks Connections
	Connecting FPM Data Points with the LNS Tree
	Connecting FPM Data Points with the LonMaker Tool

	Creating Web Connections

	Creating Custom FPM Configuration Web Pages
	Updating FPMs
	Updating Data Point Declarations
	Updating FPM Applications and Drivers
	Updating Device Interfaces

	Deploying FPMs on Multiple SmartServers
	Deploying Licensed FPM Applications

	Chapter 7: Creating FPM Application Licenses
	Licensing Overview
	Creating an FPM Licensing Tool
	Creating a License Generator Configuration File
	Creating a Security DLL File
	Building the Security DLL File
	Using the Sample Security DLL File

	Enabling License Validation in an FPM Application
	Step 1: Inserting Include Directives and Macro Definitions
	Step 2: Declaring Data Variables
	Step 3: Creating the License Validation Routine
	Step 4: Writing the License Validation Algorithm
	Verifying the Lock ID
	Verifying the License Key

	Step 5: Implementing the License Validation Call Mechanism
	Step 6: Compiling the Licensed FPM Application

	Building the Release Version of a Licensed FPM Application
	Creating FPM Application Licenses
	Supplying FPMs to Customers

	Chapter 8: Localizing the SmartServer Web Interface
	Language Localization Overview
	Creating a Language Localization Project
	Creating Localized Custom SmartServer Web Pages
	Translating Common Properties
	Translating Embedded Application Properties
	Creating a Localized Custom SmartServer Web Page

	Creating Localized FPM Configuration Web Pages
	Localizing the Language of the SmartServer Web Interface
	Translating Property Files
	Creating New Language Folders
	Editing the index.htm File to Enable a New Language on the S
	Translating the Welcome.htm File
	Translating the Welcome.htm File with Adobe Contribute CS3 a
	Translating the Welcome.htm File with a Text Editor

	Translating the Menu.htm File
	Translating the Menu.htm File with Adobe Contribute CS3 and
	Translating the Menu.htm File with a Text Editor

	Translating the Sidebar.htm File
	Translating the Sidebar.htm File with Adobe Contribute CS3 a
	Translating the Sidebar.htm File with a Text Editor

	Viewing the Localized SmartServer Web Interface

	Appendix A: FPM Programmer’s Reference
	Overview
	Template Files
	Routines
	Initialize()
	FPM Application Example
	FPM Driver Example

	Work()
	FPM Application Example
	FPM Driver Example

	OnTimer()
	FPM Application
	FPM Driver

	Shutdown()
	FPM Application Example
	FPM Driver Example

	Methods
	Internal FPM Data Point Methods
	Changed()
	Propagate()
	ResetPriority()

	FPM Application Data Point Property Methods
	GetDpPropertyAsString(UCPTname)
	GetDpPropertyAsString(UCPTAliasName)
	GetDpPropertyAsTimeSpec(UCPTlastUpdate)
	GetDpPropertyAsPointStatus(UCPTstatus)
	GetDpPropertyAsInt(UCPTpriority)
	SetDpProperty (UCPTAliasName)
	SetDpProperty (UCPTpriority)

	FPM Driver Data Point Property Methods
	SetDpProperty(defOutput)
	SetDpProperty(persist)
	SetDpProperty(pollRate)
	SetDpProperty(unit)

	UFPT Local Variables
	External SmartServer Data Point Methods
	List()
	Read()
	Write()

	Timer Methods
	Start()
	START_TIMER()
	Expired()
	Stop ()
	StopAllTimers()
	IsRunning()
	GetMode()
	GetTimeoutMillis()

	RS-232 Interface Methods
	rs232_open()
	rs232_ioctl()
	rs232_read()
	rs232_write()
	rs232_close()

	RS-485 Interface Methods
	rs485_open()
	rs485_setparams()
	rs485_ioctl()
	rs485_read()
	rs485_write()
	rs485_close()

	File Access Methods
	fopen()
	fread()
	fseek()
	fwrite()
	fclose()

	Appendix B: FPM Development and Deployment Checklist
	Appendix C: i.LON SmartServer Software License Agreement

